思路

统计数的种类数,也等价于统计有多少个数满足其之前没有与其相同的数

将序列以$\frac{k}{2}$为块大小分块,那么即会有$m=\frac{2n}{k}$个块

(关于$k=1$的情况,以1为块大小分块即可,具体可以自行代入检验)

考虑$\forall 1\le i<j\le m$,将第$i$个块的数和第$j$个块中的数依次加入$S$中(然后清空),那么一个数有贡献当且仅当其每一次加入时$S$中都没有与其相同的数

另外,每一个块内部只要其被操作即会考虑,注意特判$m=1$时(此时必然是$n=k=1$)

考虑这样的询问次数,不难得到即为$k{m\choose 2}\approx\frac{2n^{2}}{k}$,显然无法通过

优化1

考虑优化,对于$1\le i<j<k\le m$,操作完第$i$个块和第$j$个块后可以不清空,直接操作第$j$个块和第$k$个块,这样只需要加入第$k$个块中的数即可,那么次数也即从$k$变为了$\frac{k}{2}$

具体的,可以看作一张$m$个点的单向完全图(即仅有$i<j$时满足$(i,j)\in E$),将所有的边划分为若干条链(不允许重复,重复不妨拆成两条链),最终询问次数即为$\frac{k}{2}{m\choose 2}+\frac{k}{2}$链数(长度非0)

关于如何划分,考虑枚举$d=j-i$,并将这类边按以下方式划分
$$
1-(d+1)-(2d+1)-...\\2-(d+2)-(2d+2)-...\\......\\d-2d-3d-...
$$
考虑链数,对$d$的值分类讨论:

1.若$d\le \frac{m}{2}$,显然只有$d$条链

2.若$d>\frac{m}{2}$,注意到若起点大于$m-d$,那么长度为0,因此也只有$m-d$条链

综上,链数即为$\sum_{d=1}^{\frac{m}{2}}d+\sum_{d=\frac{m}{2}+1}^{m}(m-d)=\frac{n^{2}}{k^{2}}$,代入可得询问次数约为$\frac{3n^{2}}{2k}$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 int n,m,k,ans,st[N],ed[N],vis[N];
5 char s[1];
6 void clear(){
7 printf("R\n");
8 fflush(stdout);
9 }
10 void add(int x){
11 printf("? %d\n",x);
12 fflush(stdout);
13 scanf("%s",s);
14 if (s[0]=='Y')vis[x]=1;
15 }
16 void write(int x){
17 printf("! %d\n",x);
18 fflush(stdout);
19 }
20 int main(){
21 scanf("%d%d",&n,&k);
22 k=max(k/2,1),m=n/k;
23 if (m==1){
24 write(1);
25 return 0;
26 }
27 for(int i=1;i<=m;i++)st[i]=(i-1)*k+1,ed[i]=i*k;
28 for(int i=1;i<=m/2;i++)
29 for(int j=1;j<=i;j++){
30 clear();
31 for(int k=j;k<=m;k+=i)
32 for(int l=st[k];l<=ed[k];l++)add(l);
33 }
34 for(int i=m/2+1;i<=m;i++)
35 for(int j=1;j<=m-i;j++){
36 clear();
37 for(int k=j;k<=m;k+=i)
38 for(int l=st[k];l<=ed[k];l++)add(l);
39 }
40 for(int i=1;i<=n;i++)
41 if (!vis[i])ans++;
42 write(ans);
43 return 0;
44 }

优化2

注意到长度$>\frac{m}{2}$的链至多只有1条,因此$\frac{3n^{2}}{2k}$基本已经达到了下限,还需要新的优化

具体的,考虑在查询时,如果当前数已经确定没有贡献,就不再加入

这样优化的意义并不仅仅是减少了这一次操作,而是整张图并不一定要是DAG,即使出现环也可以保证每一种数恰好产生一个贡献(即保留一个)

此时,图即变成了无向图(每一条边可以任意定向),将$m$个点的无向完全图划分为$\frac{m}{2}$条路径($m$为偶数)是一个经典的问题,具体方式即
$$
1-m-2-(m-1)-3-...-(\frac{m}{2}+1)\\2-1-3-m-4-...-(\frac{m}{2}+2)\\......\\\frac{m}{2}-(\frac{m}{2}-1)-(\frac{m}{2}+1)-(\frac{m}{2}-2)-(\frac{m}{2}+2)-...-m
$$
关于正确性,感性理解即将这$m$个点按$1,2,...,m$顺时针排列,每一次即将上一次的路径顺时针旋转一格,那么每一条边都恰好旋转了一圈,即遍历了逆时针方向该跨度的所有边

综上,链数即为$\frac{m}{2}$,代入可得询问次数为$\frac{n^{2}}{k}$($\frac{mk}{4}$恰和前者${m\choose 2}$估计为$m^{2}$的误差抵消),可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 int n,m,k,ans,st[N],ed[N],vis[N];
5 char s[1];
6 void clear(){
7 printf("R\n");
8 fflush(stdout);
9 }
10 void add(int x){
11 if (vis[x])return;
12 printf("? %d\n",x);
13 fflush(stdout);
14 scanf("%s",s);
15 if (s[0]=='Y')vis[x]=1;
16 }
17 void write(int x){
18 printf("! %d\n",x);
19 fflush(stdout);
20 }
21 int main(){
22 scanf("%d%d",&n,&k);
23 k=max(k/2,1),m=n/k;
24 if (m==1){
25 write(1);
26 return 0;
27 }
28 for(int i=1;i<=m;i++)st[i]=(i-1)*k+1,ed[i]=i*k;
29 for(int i=1;i<=m/2;i++){
30 clear();
31 int shift=0;
32 for(int j=1;j<=m;j++){
33 int pos=(i+shift+m-1)%m+1;
34 for(int k=st[pos];k<=ed[pos];k++)add(k);
35 if (j&1)shift++;
36 shift=-shift;
37 }
38 }
39 for(int i=1;i<=n;i++)
40 if (!vis[i])ans++;
41 write(ans);
42 return 0;
43 }

[cf1290D]Coffee Varieties的更多相关文章

  1. Codeforces Round #616 Coffee Varieties

    题意 不太容易讲清,看英文吧 codeforces 做法 先从简单的看起 将块以\(\frac{k}{2}\)个元素为界,然后类似线段树一样递归下去,每次一层的左子树跟右子树的块相互暴力比较 \[\b ...

  2. Codeforces 1290D - Coffee Varieties(分块暴力+完全图的链覆盖)

    Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 发现自己交互题烂得跟 s ...

  3. 支付宝WAP支付接口开发(Node/Coffee语言)

    此博客不更新很久了, 更新的文档在这, 有兴趣到这里围观: http://neutra.github.io/2013/%E6%94%AF%E4%BB%98%E5%AE%9DWAP%E6%94%AF%E ...

  4. nssm在windows服务器上部署nodejs,coffee启动方式

    本想用forever / pm2 来部署nodejs, 百度后发现只能在Linux系统上使用,window上没法使用,兜一圈后又转nssm了.... 在Linux上,可以轻松的使用forever或者p ...

  5. Coffee Script 笔记 1

    安装node 虽然官网提供了单文件bin的版本 但是并不知道怎么安装npm 于是乎还是得安装msi  (坑 当使用 coffee -w -c . 监视文件改变 即时编译的时候会 提示 Error: T ...

  6. 【Mood-20】滴滤咖啡做法 IT工程师加班必备 更健康的coffee 项目经理加班密鉴

    Drip Coffee

  7. HER COFFEE夜场代金券【1折】_北京美食团购_360团购导航

    HER COFFEE夜场代金券[1折]_北京美食团购_360团购导航 HER COFFEE夜场代金券

  8. Coffee

    Coffee 从接触Spring 到现在已经差不多2年多了,期间用它做过几个项目,从个人使用角度来说,Spring无疑是非常的成熟和方便的,但是知道怎么用,却不知道原理是码农和攻城师的区别,现在准备自 ...

  9. B. Karen and Coffee

    B. Karen and Coffee time limit per test 2.5 seconds memory limit per test 512 megabytes input standa ...

随机推荐

  1. netty 处理客户端连接

    Netty如何处理连接事件 上文讲了Netty如何绑定端口,现在我们来阅读下netty如何处理connect事件.上文我们说了NioEventLoop启动后不断去调用select的事件,当客户端连接时 ...

  2. Windows 11正式版来了,下载、安装教程、一起奉上!

    Windows 11正式版已经发布了,今天给大家更新一波Win11系统的安装方法,其实和Win10基本一样,有多种方法.   安装Win11前请先查看电脑是否支持Win11系统,先用微软自家的PC H ...

  3. Mysql读写分离集群的搭建且与MyCat进行整合

    1. 概述 老话说的好:不熟悉的东西不要不懂装懂,做人要坦诚,知道就是知道,不知道就是不知道. 言归正传,今天我们来聊聊 Mysql主从读写分离集群是如何搭建的,并且聊一下如何用 MyCat 去访问这 ...

  4. redis在微服务领域的贡献

    本文已收录 https://github.com/lkxiaolou/lkxiaolou 欢迎star. 前言 说到redis,可能大家的脑海中蹦出的关键词是:NoSQL.KV.高性能.缓存等.但今天 ...

  5. MySQL ENGINES 引擎

    引擎 存储引擎是数据库底层软件组织. 数据库管理系统(DBMS)使用数据引擎进行创建.查询.更新和删除数据. 不同的存储引擎提供不同的存储机制.索引技巧.锁定水平等功能. MySQL的核心就是存储引擎 ...

  6. 10-1 Python 学习笔记

    1. 项目 在文本编辑器中新建一个文件,写几句话来总结一下你至此学到的 Python 知识,其中每一行都以"In Python you can"打头. 将这个文件命名为learni ...

  7. WEB安全指南

    说明:本文是Mozilla Web应用部署文档,对运维或者后端开发团队的部署行为进行指导.该部署安全规范内容充实,对于部署有很大意义.同时也涉及到了许多web前端应用安全的基本知识,如CSP, TOK ...

  8. 【c++ Prime 学习笔记】第6章 函数

    6.1 函数基础 函数定义包括:返回类型.函数名字.由0个或多个形参组成的列表以及函数体 通过调用运算符()来执行函数,它作用于一个表达式,该表达式是函数或函数指针.圆括号内是一个逗号隔开的实参列表, ...

  9. [技术博客] 软工-Ruby on Rails 后端开发总结分享

    [技术博客] 软工-Ruby on Rails 后端开发总结分享 在这次软件编写中,我们的后端使用了Ruby on Rails (RoR)框架. Rails框架是用Ruby编写的.这意味着当我们为Ru ...

  10. poi实现生成下拉选

    在我们日常开发中,经常需要使用poi操作excel文件,现在就简单介绍一下在poi中是如何生成下拉选的. 1.创建workbook 2.创建数据约束 3.设置数据的有效性 @Test public v ...