FFT --- Fast Foulier Transformation

以 $O(n \log n)$ 的速度计算 $\forall k=1,2,\dots,n, c[k]=\sum\limits_{i=0}^{k} a[i]b[k-i]$

**command_block 大神's blog**

记住,要 10min 内默出来!

注意事项:

  1. $tr[i]$ 是算出 $i$ 的二进制翻转的。
  2. 一定要判断 $is_idft$,如果是则 $w$ 虚部要取反。
  3. $n$ 必须是 2 的幂。

对于 $\forall k=1,2,\dots,n, c[k]=\sum\limits_{i=0}^{k} a[i]b[k+c+i]$ 这样的方式:

令 $ b'[i]=b[n-i] $

则 $  b[k+c-i]=b'[n-(k+c-i)]=b'[(n-k-c)-i] $

于是 $ c[k]=\sum\limits_{i=0}^{k} a[i]b[k+c+i]=\sum\limits_{i=0}^{k} a[i]b'[(n-k-c)-i] $

若 $n-k-c \geq k$,则 $c[k]=\sum\limits_{i=0}^{k} a[i]b'[(n-k-c)-i] =\sum\limits_{i=0}^{n-k-c} a[i]b'[(n-k-c)-i] (let\  a[j]=0, \forall k \lt j \leq n-k-c) $

卷积!

FFT 傅里叶万岁的更多相关文章

  1. 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)

    1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...

  2. 信号分析——从傅里叶变化到FFT

    我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的. 在最外面的小齿轮上有一个小人——那就是我们自己. 我们只看到这个小人毫无规律的在幕布前表演,却无法预测 ...

  3. 傅里叶:有关FFT,DFT与蝴蝶操作(转 重要!!!!重要!!!!真的很重要!!!!)

    转载地址:http://blog.renren.com/share/408963653/15068964503(作者 :  徐可扬) 有没有!!! 其实我感觉这个学期算法最难最搞不懂的绝对不是动态规划 ...

  4. 算法系列:FFT 001

    转载自http://blog.csdn.net/orbit/article/details/17210461 2012年9月的时候,一个南京的大学生从电视台播放的一段记者采访360总裁周鸿祎的视频中破 ...

  5. 图像fft和wavelet变换矩阵和向量区别 dwt2和wavedec2联系

    1.  对于小波变换,dwt2 :单级离散2维小波变换 wavedec2 :多级2-D小波分解 matlab中这两者联系是都能对图像进行小波分解,区别是dwt2是二维单尺度小波变换,只能对输入矩阵X一 ...

  6. dennis gabor 从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换(转载)

    dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅 ...

  7. FS,FT,DFS,DTFT,DFT,FFT的联系和区别

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...

  8. FFT初解(转)

    源:FFT初解 一.前言 首先申明俺不是一个算法工程师,俺是一个底层驱动工程师,有人会发问一个底层驱动工程师需要这个吗?但是我不幸的告诉你,确实是需要的,不过我们不要像算法工程师那样搞得很精通,但是还 ...

  9. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

随机推荐

  1. [BUUCTF]PWN11——get_started_3dsctf_2016

    [BUUCTF]PWN11--get_started_3dsctf_2016 题目网址:https://buuoj.cn/challenges#get_started_3dsctf_2016 步骤: ...

  2. 【Web】BUUCTF-warmup(CVE-2018-12613)

    BUUCTF 的第一题,上来就给搞懵了.. .这要是我自己做出来的,岂不是相当于挖了一个 CVE ?(菜鸡这样安慰自己)   问题在 index.php 的 55~63 行 // If we have ...

  3. Tornadofx学习笔记(4)——IconTextFx开源库,整合5000+个字体图标

    JavaFx中其实也可以直接使用字体图标iconfont的,只需要加载ttf字体文件,之后设置unicode即可,具体可以看我给出的代码 既然JavaFx可以,那么以JavaFx为基础的Tornado ...

  4. 记一次Linux bash 命令行卡顿排查之警惕LD_PRELOAD环境变量

    现象: 通过屏幕或者ssh登录Linux操作系统(本例:Ubuntu)后,执行ls 需要数秒才返回 strace -c ls 查看实际命令调用耗时并不长 对比和正常执行的主机命令执行时,加载的库文件差 ...

  5. java 多线程:Thread类常用方法:setPriority优先级、interrupt中断标记、suspend暂停与唤醒resume(已过时);daemon守护线程

    常用方法: boolean isAlive() 测试此线程是否存活. boolean isDaemon() 测试此线程是否为守护程序线程. static void sleep?(long millis ...

  6. SQL:利用多表更新优化子查询

    原SQL: update bi_data.order_list_wxset is_start='1',proc_time=now()where 1=1and is_end='0' and 交易时间&l ...

  7. JAVA接收postman的中raw的参数

    /** * java获取raw */ public static String readRaw(InputStream inputStream) { String result = "&qu ...

  8. 【LeetCode】153. Find Minimum in Rotated Sorted Array 解题报告(Python)

    [LeetCode]153. Find Minimum in Rotated Sorted Array 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode. ...

  9. 【剑指Offer】二叉树的下一个结点 解题报告(Python)

    [剑指Offer]二叉树的下一个结点 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...

  10. 【LeetCode】416. Partition Equal Subset Sum 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 动态规划 日期 题目地址:https://l ...