首先计算出以1为左端点的所有区间的mex,考虑删除左端点仍然维护这个序列:设当前删除点下一次出现在y,y~n的mex不变,从左端点到y的点中大于删除值的点要变成删除值,因为这个是不断递增的,所以是一段区间,可以用线段树来维护。

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 int n,a[N],fi[N],nex[N],laz[N<<2],ma[N<<2],vis[N];
8 long long ans,f[N<<2];
9 void update(int k,int l,int r,int x){
10 laz[k]=ma[k]=x;
11 f[k]=x*(r-l+1);
12 }
13 void down(int k,int l,int r){
14 if (laz[k]==-1)return;
15 update(L,l,mid,laz[k]);
16 update(R,mid+1,r,laz[k]);
17 laz[k]=-1;
18 }
19 void up(int k){
20 f[k]=f[L]+f[R];
21 ma[k]=max(ma[L],ma[R]);
22 }
23 void update(int k,int l,int r,int x,int y,int z){
24 if ((l>y)||(x>r))return;
25 if ((x<=l)&&(r<=y)){
26 update(k,l,r,z);
27 return;
28 }
29 down(k,l,r);
30 update(L,l,mid,x,y,z);
31 update(R,mid+1,r,x,y,z);
32 up(k);
33 }
34 int query(int k,int l,int r,int x){
35 if (l==r)return l+(ma[k]<x);
36 down(k,l,r);
37 if (ma[L]>x)return query(L,l,mid,x);
38 return query(R,mid+1,r,x);
39 }
40 int main(){
41 while (scanf("%d",&n)!=EOF){
42 if (!n)return 0;
43 ans=0;
44 for(int i=1;i<=n;i++){
45 scanf("%d",&a[i]);
46 if (a[i]>n)a[i]=n;
47 }
48 memset(vis,0,sizeof(vis));
49 for(int i=0;i<=n;i++)fi[i]=n+1;
50 memset(laz,-1,sizeof(laz));
51 for(int i=n;i;i--){
52 nex[i]=fi[a[i]];
53 fi[a[i]]=i;
54 }
55 for(int i=1,j=0;i<=n;i++){
56 vis[a[i]]=1;
57 while (vis[j])j++;
58 update(1,1,n,i,i,j);
59 }
60 for(int i=1;i<n;i++){
61 ans+=f[1]+i-1;
62 update(1,1,n,i,i,-1);
63 update(1,1,n,query(1,1,n,a[i]),nex[i]-1,a[i]);
64 }
65 printf("%lld\n",ans+(a[n]==0));
66 }
67 }

[hdu4747]Mex的更多相关文章

  1. hdu4747——Mex

    1.题目大意:对一个序列的每一个区间求Mex,最后所有的mex相加(mex就是SG的那个),力求nlogn... 2.分析:最近开始刷线段树了,还是有很多不会啊 首先把1-1 1-2 1-- 1-n这 ...

  2. HDU-4747 Mex(线段树区间更新)

    题目大意:给一个长度为n的整数序列,定义mex(i,j)表示区间[i,j]中没有出现过的最小非负整数,求sigma(mex(i,j)),即序列中所有连续非空子区间的mex之和. 题目分析: answe ...

  3. HDU-4747 Mex 线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:求一个数列中,所有mex(L,R)的和. 注意到mex是单调不降的,那么首先预处理出mex ...

  4. [置顶] hdu4747 Mex 线段树

    题意:给你一个序列,让你求出对于所有区间<i, j>的mex和,mex表示该区间没有出现过的最小的整数. 思路:从时限和点数就可以看出是线段树,并且我们可以枚举左端点i, 然后求出所有左端 ...

  5. HDU4747:Mex(线段树区间修改)

    传送门 题意: 给出\(n\)个数,然后求\(\sum_{i=1}^n\sum_{j=i}^nmex(i,j)\).\(mex(i,j)\)表示区间\([i,j]\)的\(mex\). 思路: 考虑枚 ...

  6. Codeforces Round #381 (Div. 2)C. Alyona and mex(思维)

    C. Alyona and mex Problem Description: Alyona's mother wants to present an array of n non-negative i ...

  7. Codeforces 740C. Alyona and mex 思路模拟

    C. Alyona and mex time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...

  8. bzoj3339 rmq problem (range mex query)

    给一个长度为n的数列a,q个询问,每次询问一段区间的mex.(没有出现过的最小非负整数) 1<=n,q<=200000,0<=ai<=200000. 题解1 莫队 我们将权值分 ...

  9. 转:在VS2010下编译、调试和生成mex文件

    最近帮人调了一个程序,是网上公开的代码,利用matlab与c++混合编程做三维模型关键点检测,发现他们可以用VS2010编译.调试.生成mexw32文件,因此觉得之前在Matlab上利用mex命令真是 ...

随机推荐

  1. C#开发BIMFACE系列48 Nginx部署并加载离线数据包

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在前一篇博客<C#开发BIMFACE系列47 IIS部署并加载离线数据包>中详细介绍了IIS部署并访问的完整步 ...

  2. python爬虫时,解决编码方式问题的万能钥匙(uicode,utf8,gbk......)

    转载   原文:https://blog.csdn.net/xiongzaiabc/article/details/81008330 无论遇到的网页代码是何种编码方式,都可以用以下方法统一解决 imp ...

  3. 关于keras框架的介绍以及操作使用

    Keras 是一个 Python 深度学习框架,可以方便地定义和训练几乎所有类型的深度学习模型.Keras 最开始是为研究人员开发的,其目的在于快速实验.我们可以进入网站主页 - Keras 中文文档 ...

  4. [源码解析] PyTorch如何实现前向传播(3) --- 具体实现

    [源码解析] PyTorch如何实现前向传播(3) --- 具体实现 目录 [源码解析] PyTorch如何实现前向传播(3) --- 具体实现 0x00 摘要 0x01 计算图 1.1 图的相关类 ...

  5. 【UE4 C++ 基础知识】<6> 容器——TMap

    概述 TMap主要由两个类型定义(一个键类型和一个值类型),以关联对的形式存储在映射中. 将数据存储为键值对(TPair<KeyType, ValueType>),只将键用于存储和获取 映 ...

  6. [no_code团队]项目介绍 & 需求分析 & 发布预测

    项目 内容 2020春季计算机学院软件工程(罗杰 任健) 博客园班级博客 作业要求 团队项目选择 我们在这个课程的目标是 在团队合作中提升软件开发水平 这个作业在哪个具体方面帮助我们实现目标 进行项目 ...

  7. RabbitMQ的一些理解和笔记

    在这篇博客中,简单记录一下 rabbitmq 服务器中一些基本的概念. Connection: connection 为 TCP连接,是我们的应用程序和RabbitMQ服务器真正发送和接收数据的地方. ...

  8. HMS Core Keyring携手航班管家和高铁管家,打造美好出行体验

    高铁管家是国内最早⽀持⼿机⽀付购买⽕⻋票App之⼀,日活用户超380万,为⽤户提供一站式铁路出⾏服务.高铁管家母公司--深圳市活⼒天汇科技股份有限公司是国内智能⼤出⾏的开创者,先后推出航班管家.⾼铁管 ...

  9. 《手把手教你》系列技巧篇(三十五)-java+ selenium自动化测试-单选和多选按钮操作-下篇(详解教程)

    1.简介 今天这一篇宏哥主要是讲解一下,如何使用list容器来遍历多选按钮.大致两部分内容:一部分是宏哥在本地弄的一个小demo,另一部分,宏哥是利用JQueryUI网站里的多选按钮进行实战. 2.d ...

  10. C#笔记2__Char类、String类、StringBuilder类 / 正则表达式 /

    Char类 String类 字符串的格式化:String类的Format方法 StringBuilder类 以上:百度 or 查手册.....