感觉这个分布的含义很有用啊, 能预测‘最大', 也就是自然灾害, 太牛了.

主要内容

定义

[Gumbel distribution-wiki](Gumbel distribution - Wikipedia)

其分布函数和概率密度函数分别为:

\[F(x; \mu, \beta) = e^{-e^{-(x-\mu)/\beta}}, \quad f(x;\mu,\beta) = \frac{1}{\beta} e^{-[e^{-(x-\mu)/\beta}+(x-\mu) / \beta]}
\]

标准Gumbel分布(即\(\mu=0, \beta=1\)):

\[F(x) = e^{-e^{-x}}, \quad f(x) = e^{-(x+e^{-x})}.
\]

从Gumbel分布中采样, 只需:

\[x = F^{-1}(u) = \mu - \beta \ln (-\ln(u)), \quad u \sim \mathrm{Uniform}(0, 1).
\]

proof:

\[P(F^{-1}(u) \le x) = P(u \le F(x)) = F(x),
\]

故\(F^{-1}(u)\)的分布函数就是\(F(x)\).

\[\mathbb{E} [x] = \mu + \gamma \cdot \beta,
\]

其中 \(\gamma\)是Euler-Mascherorni constant.

Gumbel-Max trick

假设我们有一个离散的分布\([\pi_1, \pi_2, \cdots, \pi_k]\)共\(k\)类, \(\pi_i\)表示为第\(i\)类的概率, 则从该分布中采样\(z\)等价于

\[z = \arg \max_i [g_i + \log \pi_i], \quad g_i \sim \mathrm{Gumbel}(0, 1), \mathrm{i.i.d}.
\]

proof:

\[P(z=i) = P(g_i + \log \pi_i \ge \max \{g_j + \log \pi_j\}_{j\not=i}) = \int_{-\infty}^{+\infty} p(x) P(x+\log \pi_i \ge \{g_j + \log \pi_j\}_{j\not=i}) \mathrm{d}x.
\]

\[P(x+\log \pi_i \ge \{g_j + \log \pi_j\}_{j\not=i}) = \prod_{j\not=i} P(g_j \le x + \log\pi_i - \log \pi_j) = e^{-e^{-x} \cdot \frac{1 - \pi_i}{\pi_i}},
\]

带入计算得:

\[\begin{array}{ll}
P(z=i)
& = \int_{-\infty}^{+\infty} e^{-(x+e^{-x} \cdot \frac{1}{\pi_i})} \mathrm{d}x \\
& = \int_{-\infty}^{+\infty} \pi_i \cdot e^{-[(x-\log\frac{1}{\pi_i})+e^{-(x - \log \frac{1}{\pi_i})}]} \mathrm{d}x \\
& = \pi_i.
\end{array}
\]

Gumbel trick 用于归一化

我们时常会碰到这样的问题:

\[p(x;\theta) = \frac{f(x;\theta)}{Z},
\]

其中\(Z=\sum_{i=1}^K f(x_i;\theta)\) 是归一化常数, 那么怎么计算\(Z\)呢?

构建随机变量\(T\):

\[T = \max_i [\ln f(x_i) + g_i], \quad g_i \sim \mathrm{Gumbel}(-c, 1), \mathrm{i.i.d.}
\]

\[T \sim \mathrm{Gumbel}(-c + \ln Z)
\]

proof:

\[P(T \le t) = P(\max_i [\ln f(x_i) + g_i] \le t) = \prod_{i} P(g_i \le t - \ln f(x_i)) = e^{-e^{-(t+c-\ln Z)}} = F(t;-c+\ln Z ,1).
\]

因为

\[\mathbb{E}[T] = -c + \ln Z + \gamma,
\]

故我们只需估计\(\mathbb{E}[T] \approx \sum_j T_j\) 即可估计\(Z\)

\[Z = \exp (\sum_{j}T_j + c - \gamma).
\]

所以必须要求离散的\(x\)?

代码

[scipy-gumbel](scipy.stats.gumbel_r — SciPy v1.6.3 Reference Guide)

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gumbel_r fig, ax = plt.subplots(1, 1)
# mean, var, skew, kurt = gumbel_r.stats(moments='mvsk')
# print(mean, var, skew, kurt) x = np.linspace(gumbel_r.ppf(0.01), gumbel_r.ppf(0.99), 100)
ax.plot(x, gumbel_r.pdf(x), 'r-', lw=5, alpha=0.6, label="gumbel_r pdf")
r = gumbel_r.rvs(size=1000, loc=0, scale=1)
ax.hist(r, density=True, histtype="stepfilled", alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()

Gumbel distribution的更多相关文章

  1. Gumbel-Softmax Trick和Gumbel分布

      之前看MADDPG论文的时候,作者提到在离散的信息交流环境中,使用了Gumbel-Softmax estimator.于是去搜了一下,发现该技巧应用甚广,如深度学习中的各种GAN.强化学习中的A2 ...

  2. (数据科学学习手札03)Python与R在随机数生成上的异同

    随机数的使用是很多算法的关键步骤,例如蒙特卡洛法.遗传算法中的轮盘赌法的过程,因此对于任意一种语言,掌握其各类型随机数生成的方法至关重要,Python与R在随机数底层生成上都依靠梅森旋转(twiste ...

  3. Python中生成随机数

    目录 1. random模块 1.1 设置随机种子 1.2 random模块中的方法 1.3 使用:生成整形随机数 1.3 使用:生成序列随机数 1.4 使用:生成随机实值分布 2. numpy.ra ...

  4. Categorical Reparameterization with Gumbel-Softmax

    目录 概 主要内容 Gumbel distribution Jang E., Gu S. and Poole B. Categorical reparameterization with gumbel ...

  5. 齐夫定律, Zipf's law,Zipfian distribution

    齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...

  6. CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution

    今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...

  7. Wishart distribution

    Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...

  8. distribution 中一直在运行 waitfor delay @strdelaytime 语句

    Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...

  9. Distribution2:Distribution Writer

    Distribution Writer 调用Statement Delivery 存储过程,将Publication的改变同步到Subscriber中.查看Publication Properties ...

随机推荐

  1. Z可读作zed的出处?

    Commercial and international telephone and radiotelephone SPELLING ALPHABETS between World War I and ...

  2. A Child's History of England.41

    When intelligence of this new affront [hit in the face, c-o-n-frontation!] was carried to the King i ...

  3. 大数据学习day26----hive01----1hive的简介 2 hive的安装(hive的两种连接方式,后台启动,标准输出,错误输出)3. 数据库的基本操作 4. 建表(内部表和外部表的创建以及应用场景,数据导入,学生、分数sql练习)5.分区表 6加载数据的方式

    1. hive的简介(具体见文档) Hive是分析处理结构化数据的工具   本质:将hive sql转化成MapReduce程序或者spark程序 Hive处理的数据一般存储在HDFS上,其分析数据底 ...

  4. linux shell中的条件判断语句

    http://bbs.chinaunix.net/thread-396805-1-1.html shell 判断语句 流程控制 "if" 表达式 如果条件为真则执行then后面的部 ...

  5. 【Netty】最透彻的Netty原理架构解析

    这可能是目前最透彻的Netty原理架构解析 本文基于 Netty 4.1 展开介绍相关理论模型,使用场景,基本组件.整体架构,知其然且知其所以然,希望给大家在实际开发实践.学习开源项目方面提供参考. ...

  6. Linux:变量$#,$@,$0,$1,$2,$*,$$,$?

    写一个简单的脚本 vim var 脚本内容如下: #!/bin/sh echo "the number of parameters passed to the script: $#" ...

  7. 【Linux】【Services】【SaaS】Docker+kubernetes(3. 用ansible管理机器和软件)

    1. 简介 1.1. 公司环境使用的puppet,但是我更喜欢ansible,原因有二,第一,我是红帽的忠粉:),第二,我对python比较熟悉 1.2. ansible官方网站:https://ww ...

  8. DevOps的分与合

    一.抽象的 DevOps DevOps 是使软件开发和 IT 团队之间的流程自动化的一组实践,以便他们可以更快,更可靠地构建,测试和发布软件.DevOps 的概念建立在建立团队之间协作文化的基础上,这 ...

  9. Pytorch入门中 —— 搭建网络模型

    本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中 ...

  10. CSAPP 并发编程读书笔记

    CSAPP 并发编程笔记 并发和并行 并发:Concurrency,只要时间上重叠就算并发,可以是单处理器交替处理 并行:Parallel,属于并发的一种特殊情况(真子集),多核/多 CPU 同时处理 ...