1678 lyk与gcd
这天,lyk又和gcd杠上了。
它拥有一个n个数的数列,它想实现两种操作。
1:将 ai 改为b。
2:给定一个数i,求所有 gcd(i,j)=1 时的 aj 的总和。
第一行两个数n,Q(1<=n,Q<=100000)。
接下来一行n个数表示ai(1<=ai<=10^4)。
接下来Q行,每行先读入一个数A(1<=A<=2)。
若A=1,表示第一种操作,紧接着两个数i和b。(1<=i<=n,1<=b<=10^4)。
若B=2,表示第二种操作,紧接着一个数i。(1<=i<=n)。
对于每个询问输出一行表示答案。
5 3
1 2 3 4 5
2 4
1 3 1
2 4
9
7
思路:容斥原理;
我们用容斥将每个数的质因子,然后将其所对应的数加到表中,奇加偶减,然后分解当前的询问的数,然后可以重表中找出那些和他不互质的所对应的书数的和,然后总的减去即可。
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<queue>
6 #include<string.h>
7 #include<math.h>
8 #include<map>
9 using namespace std;
10 typedef long long LL;
11 int ans[100000];
12 bool prime[100005];
13 LL cnt[100005];
14 int ak[100005];
15 int tt[200];
16 void table(int n,int cn,int v);
17 LL ac(int n);
18 int main(void)
19 {
20 int N,Q;
21 int i,j;
22 for(i = 2; i < 1000; i++)
23 {
24 if(!prime[i])
25 {
26 for(j = i; i*j < 100000; j++)
27 {
28 prime[i*j] = true;
29 }
30 }
31 }
32 int cn = 0;
33 for(i = 2; i < 100000; i++)
34 {
35 if(!prime[i])
36 {
37 ans[cn++] = i;
38 }
39 }
40 scanf("%d %d",&N,&Q);
41 LL sum = 0;
42 for(i = 1; i <= N; i++)
43 {
44 scanf("%d",&ak[i]);
45 sum += ak[i];
46 table(i,cn,1);
47 }//printf("%lld\n",sum);
48 for(i = 0; i < Q; i++)
49 {
50 int val;
51 int c;
52 scanf("%d",&val);
53 if(val == 2 )
54 {
55 scanf("%d",&c);
56 printf("%lld\n",sum-ac(c));
57 }
58 else
59 {
60 int x,y;
61 scanf("%d %d",&x,&y);
62 table(x,cn,0);
63 sum -= ak[x];
64 ak[x] = y;
65 sum += ak[x];
66 table(x,cn,1);
67 }
68 }
69 return 0;
70 }
71 void table(int n,int cn,int v)
72 {
73 int f = 0;
74 bool flag = false ;
75 int x = n;
76 int cp = 0;
77 while(x > 1)
78 {
79 while(x%ans[f]==0)
80 {
81 if(!flag)
82 {
83 flag = true;
84 tt[cp++] = ans[f];
85 }
86 x/=ans[f];
87 }
88 f++;
89 flag = false ;
90 if(ans[f]*ans[f]>x)
91 break;
92 }
93 if(x>1)
94 tt[cp++] = x;
95 int i,j;
96 for(i = 1; i < (1<<cp); i++)
97 {
98 int sum = 1;int t = 0;
99 for(j = 0; j < cp; j++)
100 {
101 if(i&(1<< j))
102 {
103 sum*=tt[j];
104 t++;
105 }
106 }
107 if(v)
108 {
109 if(t%2)cnt[sum]+=ak[n];
110 else cnt[sum]-=ak[n];
111 }
112 else
113 {
114 if(t%2)cnt[sum]-=ak[n];
115 else cnt[sum]+=ak[n];
116 }
117 }
118 }
119 LL ac(int n)
120 {
121 int f = 0;
122 bool flag = false ;
123 int x = n;
124 int cp = 0;
125 while(x > 1)
126 {
127 while(x%ans[f]==0)
128 {
129 if(!flag)
130 {
131 flag = true;
132 tt[cp++] = ans[f];
133 }
134 x/=ans[f];
135 }
136 f++;
137 flag = false ;
138 if(ans[f]*ans[f]>x)
139 break;
140 }
141 if(x>1)
142 tt[cp++] = x;
143 int i,j;
144 LL k = 0;;
145 for(i = 1; i < (1<<cp); i++)
146 {
147 int sum = 1;
148 for(j = 0; j < cp; j++)
149 {
150 if(i&(1<<j))
151 {
152 sum *= tt[j];
153 }
154 }
155 k += cnt[sum];
156 }//printf("%lld\n",k);
157 return k;
158 }
1678 lyk与gcd的更多相关文章
- 51nod 1678 lyk与gcd | 容斥原理
51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...
- 51 Nod 1678 lyk与gcd
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将 ai ...
- 51 Nod 1678 lyk与gcd(容斥原理)
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...
- [51nod]1678 lyk与gcd(莫比乌斯反演)
题面 传送门 题解 和这题差不多 //minamoto #include<bits/stdc++.h> #define R register #define pb push_back #d ...
- 51nod lyk与gcd
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将 ai ...
- 51nod1678 lyk与gcd
容斥定理所以可以用莫比乌斯函数来搞.逆向思维答案等于总和减去和他互质的.那么设f[i]=∑a[j] i|j.ans[i]=sum- ∑mo[j]*f[j] 跟bzoj2440那道题挺像的都是利用莫比乌 ...
- 【51nod1678】lyk与gcd(莫比乌斯反演+枚举因数)
点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:单点修改,给定\(i\)求\(\sum_{j=1}^na_j[gcd(i,j)=1]\). 莫比乌斯反演 考虑推一推询问操作的式子: ...
- 51nod算法马拉松15
智力彻底没有了...看来再也拿不到奖金了QAQ... A B君的游戏 因为数据是9B1L,所以我们可以hash试一下数据... #include<cstdio> #include<c ...
- 51nod部分容斥题解
51nod1434 区间LCM 跟容斥没有关系.首先可以确定的一个结论是:对于任意正整数,有1*2*...*n | (k+1)*(k+2)*...*(k+n).因为这就是$C_{n+k}^{k}$. ...
随机推荐
- 31-Longest Common Prefix
Longest Common Prefix My Submissions Difficulty: Easy Write a function to find the longest common pr ...
- centos 7的命令变化
1.service -> systemctl命令 2.ifconfig -> ip 命令 3.netstat -> ss命令 4.route -> ip route命令 5.t ...
- Windows cmd 命令行基本操作
Windows cmd 命令行基本操作 1. 进入到指定根目录 注意:不区分大小写 例如进入到 D 盘 2. 进入到指定的目录 例如 (如果目录文件名太长,可以使用 tab 键来自动补全.重复按可以进 ...
- java输入代码
import java.util.Scanner; public class Demo59 { public static void main(String[] args) { / ...
- 基于python win32setpixel api 实现计算机图形学相关操作
最近读研期间上了计算机可视化的课,老师也对计算机图形学的实现布置了相关的作业.虽然我没有系统地学过图形可视化的课,但是我之前逆向过一些游戏引擎,除了保护驱动之外,因为要做透视,接触过一些计算机图形学的 ...
- 大数据学习day17------第三阶段-----scala05------1.Akka RPC通信案例改造和部署在多台机器上 2. 柯里化方法 3. 隐式转换 4 scala的泛型
1.Akka RPC通信案例改造和部署在多台机器上 1.1 Akka RPC通信案例的改造(主要是把一些参数不写是) Master package com._51doit.akka.rpc impo ...
- SpringMVC原理分析
Spring MVC主要包括以下要点: 1:由DispatcherServlet控制的整个流程: 2:注解驱动的控制器,其中包括请求映射.数据的绑定和格式化: 3:文件上传: 4:一些杂项,如静态资源 ...
- Can references refer to invalid location in C++?
在C++中,引用比指针更加的安全,一方面是因为引用咋定义时必须进行初始化,另一方面是引用一旦被初始化就无法使其与其他对象相关联. 但是,在使用引用的地方仍然会有一些例外. (1)Reference t ...
- Maven配置大全
maven项目打jar包(带依赖) <build> <plugins> <plugin> <artifactId>maven-assembly-plug ...
- VSCode上发布第一篇博客
在VSCode上发布到博客园的第一篇博客 前段时间在VSCode安装好插件WriteCnblog,多次检查writeCnblog configuration配置信息也是完全正确的,但是一直没能在VSC ...