剑指 Offer 10- I. 斐波那契数列
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1
class Solution {
public:
int fib(int n) {
long tmp=1e9+7;
if(n==0) return 0;
else if(n==1) return 1;
else{
int tt1=0,tt2=1,tt3=1;
for(int i=2;i<=n;++i){
tt3=(tt1+tt2)%tmp;
tt1=tt2;
tt2=tt3;
}
return tt3;
}
}
};
剑指 Offer 10- I. 斐波那契数列的更多相关文章
- 剑指offer七之斐波那契数列
一.题目 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39. 二.思路 序号: 0 1 2 3 4 5 ...
- 剑指offer 07:斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).(n<=39) 法一: public class Solution { publi ...
- 【剑指 Offer】10-I.斐波那契数列
题目描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - ...
- 【剑指Offer】10- I. 斐波那契数列 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 递归 动态规划 日期 题目地址:htt ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
- 剑指offer-矩形覆盖-斐波那契数列(递归,递推)
class Solution { public: int rectCover(int number) { if(number==0 || number==1||number==2) return nu ...
- 剑指offer——面试题10:斐波那契数列
个人答案: #include"iostream" #include"stdio.h" #include"string.h" using na ...
- 剑指offer第二版面试题10:斐波那契数列(JAVA版)
题目:写一个函数,输入n,求斐波那契数列的第n项.斐波那契数列的定义如下: 1.效率很低效的解法,挑剔的面试官不会喜欢 使用递归实现: public class Fibonacci { public ...
- 剑指offer 面试题10:斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 编程思想 知道斐波拉契数列的规律即可. 编程实现 class Solu ...
- 【剑指offer】10A--求裴波那切数列的第n项,C++实现
#本文是牛客网<剑指offer>刷题笔记 1.题目 写入一个函数,输入n,输出裴波那切数列的第n项 2.思路 递归--时间和空间复杂度高 循环--时间和空间复杂度低,通过循环迭代计算第n项 ...
随机推荐
- mysql查看数据库大小
要想知道每个数据库的大小的话,步骤如下: 1.进入information_schema 数据库(存放了其他的数据库的信息) use information_schema; 2.查询所有数据的大小: s ...
- Kioskcached(1)之 Memcached & Redis & Kioskcached 性能测试对比
前言:本文仅仅是作者自己在学习过程中的一次实验而已,或许因为各种因素会导致实验结果与你之前的认知不太一样,因此请你带着批判的眼光看待本文(本文不具有实际环境的参考性). 一:测试目的 在了解了一些No ...
- grpc协议
gRPC详解 gRPC是什么? gRPC是什么可以用官网的一句话来概括 A high-performance, open-source universal RPC framework 所谓RPC(re ...
- VSCode PHP 开发环境配置 详细教程
VSCode PHP 开发环境配置 详细教程 这篇文章主要介绍了VScode+PHPstudy配置PHP开发环境的步骤,整理了官方以及优秀第三方的内容,对于学习和工作有一定借鉴意义. 配置过程 第一步 ...
- 『学了就忘』Linux基础命令 — 38、Linux中光盘的挂载
目录 步骤一:创建一个空目录 步骤二:找到光盘的设备文件名称 步骤三:挂载光盘 步骤四:访问关盘中的数据 步骤五:卸载挂载点 问题:挂载点为什么要使用空目录 提示:关于Linux系统中光盘的挂载,我们 ...
- 移动GPU分类/百科
ARM mali gpu四大微架构概述 https://zhuanlan.zhihu.com/p/107141045 http://www.neardi.com/news_23/487.html
- C++基本程序设计——面向对象程序设计课堂笔记
主要对老师上课的ppt的笔记整理 C++基本程序设计 1.c++的输入输出 使用cin,cout和流运算符,开头须有 #include<iostream> (1)cin语句:cin> ...
- ECharts 点击事件
一个问题 ECharts 点击出现多个弹窗
- python实现其它形态学操作
目录: (一) 顶帽(原图像与开操作图像的差值)(二) 黑帽(原图像与闭操作图像的差值)(三) 形态学梯度 (1)基本梯度(膨胀后的图像与腐蚀后的图像差值) (2)内部梯度(原图像减去腐蚀后的图像 ...
- [luogu7831]Travelling Merchant
考虑不断找到以下两种类型的边,并维护答案: 1.终点出度为0的边,那么此时即令$ans_{x}=\min(ans_{x},\max(r,ans_{y}-p))$ 2.(在没有"终点出度为0 ...