MD5加密

简介

这是一种使用非常广泛的加密方式,不可逆的,常见16位和32位一般都是md5

实现

import hashlib

data = '你好'
print(hashlib.md5(data.encode(encoding="UTF-8")).hexdigest()) #32位
print(hashlib.md5(data.encode(encoding="UTF-8")).hexdigest()[8:-8]) #16位

RSA加密

简介

非对称加密算法,也就是比较常见的公钥私钥加密,可逆的

指数和模加密无填充-模板一

import rsa
#模
m = "ae068c2039bd2d82a529883f273cf20a48e0b6faa564e740402375a9cb332a029b8492ae342893d9c9d53d94d3ab8ae95de9607c2e03dd46cebe211532810b73cc764995ee61ef435437bcddb3f4a52fca66246dbdf2566dd85fbc4930c548e7033c2bcc825b038e8dd4b3553690e0c438bbd5ade6f5a476b1cbc1612f5d501f"
#指数
e = '10001'
#加密参数
message = '123456' class Encrypt(object):
def __init__(self, e, m):
self.e = e
self.m = m def encrypt(self, message):
mm = int(self.m, 16)
ee = int(self.e, 16)
rsa_pubkey = rsa.PublicKey(mm, ee)
crypto = self._encrypt(message.encode(), rsa_pubkey)
return crypto.hex() def _pad_for_encryption(self, message, target_length):
message = message[::-1]
max_msglength = target_length - 11
msglength = len(message) padding = b''
padding_length = target_length - msglength - 3 for i in range(padding_length):
padding += b'\x00' return b''.join([b'\x00\x00', padding, b'\x00', message]) def _encrypt(self, message, pub_key):
keylength = rsa.common.byte_size(pub_key.n)
padded = self._pad_for_encryption(message, keylength) payload = rsa.transform.bytes2int(padded)
encrypted = rsa.core.encrypt_int(payload, pub_key.e, pub_key.n)
block = rsa.transform.int2bytes(encrypted, keylength) return block if __name__ == '__main__':
en = Encrypt(e, m)
print(en.encrypt(message))

指数和模加密无填充-模板二

import codecs

def rsa_encrypt(content):
public_exponent = '010001'
public_modulus = 'ae068c2039bd2d82a529883f273cf20a48e0b6faa564e740402375a9cb332a029b8492ae342893d9c9d53d94d3ab8ae95de9607c2e03dd46cebe211532810b73cc764995ee61ef435437bcddb3f4a52fca66246dbdf2566dd85fbc4930c548e7033c2bcc825b038e8dd4b3553690e0c438bbd5ade6f5a476b1cbc1612f5d501f' content = content[::-1]
rsa = int(codecs.encode(content.encode('utf-8'), 'hex_codec'),
16) ** int(public_exponent, 16) % int(public_modulus, 16)
# 把10进制数rsa转为16进制('x'表示16进制),再取前256位,不够的在最前面补0
return format(rsa, 'x').zfill(256)

指数和模加密无填充-模板三

import math
if __name__ == '__main__':
# 实为16进制串,前补0
e = ''
# m也需要补00
m = '008eb933413be3234dddd2730fbb1d05c8848a43d5dc3bdd997f2a9935fba6beb9ffb36854482b0b46cf7e6f9afbbe2e2e7d606fde20bec57dbf722e7985192e8813e6b67628a6f202cf655b7d2ffce4e9dc682dd6034ae706c8e255f25e4051b9ca43f25b3ad686aac9c8f6aeb71d921c13a255c806f78a5a7b9a356c2dd274e3'
m = int.from_bytes(bytearray.fromhex(m), byteorder='big')
e = int.from_bytes(bytearray.fromhex(e), byteorder='big')
# js加密为反向,为保持一致原文应反向处理,所以这里原文实际为204dowls
plaintext = 'slwod402'.encode('utf-8')
# 无填充加密逻辑
input_nr = int.from_bytes(plaintext, byteorder='big')
crypted_nr = pow(input_nr, e, m)
keylength = math.ceil(m.bit_length() / 8)
crypted_data = crypted_nr.to_bytes(keylength, byteorder='big')
print(crypted_data.hex())

指数和模加密有填充

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives.asymmetric import padding
import base64
import binascii """
另种rsa加密
""" def data_encrypt(text):
"""
RSA 加密
:param text: 加密前内容
:return: 加密后内容
"""
# 判断系统,加载指定模块
public_exponent = int("010001",16) #指数
print(public_exponent)
public_modulus=int('B23322F080BD5876C0735D585D25C7BC409F637237B07744D27FBF39FB100ABE59DF380EA6BFCDF28C286E7A0CD95BE87F6099F8F39B0E97D9782C3D33FCFB80D43D2F22A9D9417ECFD1A0B8421DEE1CD4B323E8078336E77419A97F94E60A90CA06551202F63819FC8E73425F06ECA4C05BBF8CA32366240A6C36CA61D85019',16) #模
# content = 'leadeon' + text + time.strftime("%Y%m%d%H%M%S", time.localtime())
content = text
max_length = 117
# public_key = serialization.load_pem_public_key(key, backend=default_backend())
public_key = rsa.RSAPublicNumbers(public_exponent, public_modulus).public_key(default_backend())
data = b''
for i in range(0, len(content), max_length):
data += public_key.encrypt(content[i: i + max_length].encode(),
padding.PKCS1v15())
data = base64.b64encode(data).decode()
#data =binascii.b2a_hex(data).decode() hex输出
return data

公钥加密

# 公钥加密
import base64
import rsa
from Crypto.PublicKey import RSA def encryptPassword(data, publicKeyStr):
'''
data:内容
publicKeyStr:不需要-----BEGIN PUBLIC KEY-----开头,-----END PUBLIC KEY-----结尾的格式,只要中间部分即可
key_encoded:不需要-----BEGIN PUBLIC KEY-----开头,-----END PUBLIC KEY-----结尾的格式
'''
key_encoded='''-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCdZGziIrJOlRomzh7M9qzo4ibw
QmwORcVDI0dsfUICLUVRdUN+MJ8ELd55NKsfYy4dZodWX7AmdN02zm1Gk5V5i2Vw
GVWE205u7DhtRe85W1oR9WTsMact5wuqU6okJd2GKrEGotgd9iuAJm90N6TDeDZ4
KHEvVEE1yTyvrxQgkwIDAQAB
-----END PUBLIC KEY-----'''
# 1、base64解码
publicKeyBytes = base64.b64decode(publicKeyStr.encode())
# 3、生成publicKey对象
key = RSA.import_key(publicKeyBytes)
#key = RSA.import_key(key_encoded)
# 4、对原密码加密
encryptPassword = rsa.encrypt(data.encode(), key)
return base64.b64encode(encryptPassword).decode()

私钥解密

# rsa 解密
def long_decrypt(msg):
rsa_private_key = """-----BEGIN RSA PRIVATE KEY-----
MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQClceuXNXcT7H8ElMfzfRhgOoxqmINR7LGXk+tUrIHHP8VCJfqxTKmow45dNK+kfBRKT9+uSxFlNV5uBdfaBFX13Eq8Ynq12hgvILYihU0gUNVuESTdFGaSS60AaCbuPpD9ENVgs4hrHfJwD4PWXCSpoPPcw9s4DSsxmapcHdE8hR21uWeEbQKISrZe+wdqI5Bv+iVqqd6MbX+pO3QJ4CcmVILomAEn64dHqP1cmRZaZ59J/Y9aP9qYtiPYO0kArsxVDM6ZWkDyrbjJJcbaPBmi4JppNTD/fRhDrSdRn8CBTZEnqRKLANhb4V+qaPaU9wAOWDwJqcT18RjfTcuxWi/zAgMBAAECggEAIBabUgWNpfCdph7RNTmTC77vUxFnjvEwdKy83PxkY2fL84t4NwEeetwK9artUiK6sLsTMDPhGNckDITXm7JxlbD3Udhr4m99d06J5OIj1lu3OZTbqIF3b3J8CHMq8dRyvJKSQCIyGEyDpBZuRJo0hi3wfmYCU7nCIemi8CDcXzdGXTaRdiAW73nn+Ow8sFX+XG6/6hPw9t+0r8GhrEfknC29NIPtAQqjamrKQm4lcW9eClId7vknZoNXsWw7w3B1pHy71GDFs+wquG8A3GjHOwySptrb0XexzwEzuxR0HJOdKrsNRSUncm0eY6lfQNW0PEN6IXopK0DooyCQO00rCQKBgQDZAEL6zDXPctCaPtS8qifd/hN3aMz+XvX+O811sXYaB/5ySndaR3mApJnbcoYDvL3EvFWL3YgjWL8Qp0HX7gTrdDuOv8yY+K2i347CCU+B0E81gP1tvUCVTc3x+hLKgcOs8UDH+GouLe1qycVs2FliuYngUFaZwOX4H4MFMiTgdQKBgQDDLa4JsnwY7kR88TLteEqC2G6Jk9IPRMut/PDvdrGHyj6YEw7WbZLnyAMOEm1NeTa+bIr8mPPEEM1mrS3xaWwgn1rMqqzkSC/DpgFppiJGBGX6cDFs2fYJOFBMzKlGIoHcWdl1SSEYbzxNo5ljoK6r+UaBfMcuuS5BHQ56nKpBxwKBgF2Lu1QajGftevfDdjoOsDkGuqWTTCusDCeY6C2AXwVBxPLIH0OP5FUMoDb128foqXYSKl6tFW8HZvZq4/uN5BkMdlBHZo/bRB8eeJA1K00u27aY8KdKGnlCnTFfOJKL9iqrpd2OvVdC/UI30R/m9EGW8lT8zRhjC8A29WhcAYGxAoGAA9U20LvvkfHD6Iw4Cs/M7srfSNZdTq10LoOEG7/B9r+zAPuG1BEszF5yKOmVuerCd3TcOd+rEdOepQCLoW0HkZBvkQtc/9KnFXmCF5gKnkNh2UwwvEl/emjfstJmFJmC4VfmXFZGTxuIHKI01e8G3xuzFcHki3dZgC/Y4/GFqmsCgYBvQbz9raUVVxJwkN+9UsciTNzW10Tkt2OLYlFRiD+QAC9XK7ZjrjIkQIXEL5OrzYDTU3aHNWt3QwZskSfwFD4P118ICkVdPI9If/I0iqtQwCoIM83dtTFhJrImq0zxFn/dxhJv6ga+/CqJQmLHXMWt+vtvlSgcosvU3eYlVpoPjQ==
-----END RSA PRIVATE KEY-----"""
msg = base64.b64decode(msg)
# 私钥解密
priobj = Cipher_pkcs1_v1_5.new(RSA.importKey(rsa_private_key))
data = priobj.decrypt(msg,None).decode()
return data

验签

from Crypto.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from Crypto.Signature import PKCS1_v1_5 from Crypto.PublicKey import RSA
from Crypto.Hash import SHA256
import base64 class RsaUtil: def __init__(self, pub_key, pri_key):
self.pri_key_obj = None
self.pub_key_obj = None
self.verifier = None
self.signer = None
if pub_key:
pub_key = RSA.importKey(base64.b64decode(pub_key))
self.pub_key_obj = Cipher_pkcs1_v1_5.new(pub_key)
self.verifier = PKCS1_v1_5.new(pub_key)
if pri_key:
pri_key = RSA.importKey(base64.b64decode(pri_key))
self.pri_key_obj = Cipher_pkcs1_v1_5.new(pri_key)
self.signer = PKCS1_v1_5.new(pri_key) def public_long_encrypt(self, data, charset='utf-8'):
data = data.encode(charset)
length = len(data)
default_length = 117
res = []
for i in range(0, length, default_length):
res.append(self.pub_key_obj.encrypt(data[i:i + default_length]))
byte_data = b''.join(res)
return base64.b64encode(byte_data) def private_long_decrypt(self, data, sentinel=b'decrypt error'):
data = base64.b64decode(data)
length = len(data)
default_length = 128
res = []
for i in range(0, length, default_length):
res.append(self.pri_key_obj.decrypt(data[i:i + default_length], sentinel))
return str(b''.join(res), encoding = "utf-8") def sign(self, data, charset='utf-8'):
h = SHA256.new(data.encode(charset))
signature = self.signer.sign(h)
return base64.b64encode(signature) def verify(self, data, sign, charset='utf-8'):
h = SHA256.new(data.encode(charset))
return self.verifier.verify(h, base64.b64decode(sign))

MD5withRSA 签名

from Crypto.PublicKey import RSA
from Crypto.Signature import PKCS1_v1_5
from Crypto.Hash import MD5, SHA1, SHA256
import base64
from flask import current_app
import warnings
warnings.filterwarnings("ignore") def RSA_sign(data):
privateKey = '''MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBAIooE+9hmb6GvAUQ3j9FDRgrhWMmVWKepKNmQerrvovmySUSPzFHainDMl6HuQAWHCMI9O8S9kzqG3o9pnetpG7JShB6Oc9eX0kA6n0vLR2rYXNo5uVC29/Koqp250T7lzQ9bv6P0rkjIrqjTNIPVQXToyAwQcZQ5rVhUbtnP7YlAgMBAAECgYBpSzpGS0B9sPpDciOwXNQqA6FZe7G/w+D+l8TNYnaK8Y2Dr3ByAlerFJWi7hXVNwSivwTN4MnOvO3MMIha1gBnQCFStI4PjRv2qz6vsGfzZKFadUw3ngzGhT5UtIVAd+IFbbr4J+cGjGMmF5lIEaKrRCS5u4p11uf6LmhvbBTm0QJBAMQA7RYimdU9UStIm/RSkLQg6K89Om3S2AFXwqymiqhM4m6n7lRTE1xNX4pGm1BV8C/qL0d7AHbrJBFi+hN5onMCQQC0cjAXmKdnfhTo0IvYtzpXr77odBz4zt2Ake65ssBJEWFzle69MbWgkbrTKLLjGxBwM+C7fPDGNckqhlpjMGcHAkB+vcKRT6p9svqrrHX8FO+xKp6LwmHn5jD7HU6q6b47egvpVfnM2TNpujaPaXzBA/EeaqZL6IOyYfaer4vZ0At1AkEAqezuRQpIezlMT4I0b7z8gB7MVPMjZVrJVI4YlV8znJt1ffevfxMUy0Tw/nDRJPUTodX4yBZ8VuvHqPgknkuyeQJBALYpXGOH/GjlSVtnhq7eZxvoEqiBLawW5k7Rl1IyNdGR2qxY/nnoCyP2mMCs1Ba05sCcX08zzOzMPvttbSyjqPI=''' private_keyBytes = base64.b64decode(privateKey)
priKey = RSA.importKey(private_keyBytes)
# priKey = RSA.importKey(privateKey)
signer = PKCS1_v1_5.new(priKey,)
# SIGNATURE_ALGORITHM = "MD5withRSA"
hash_obj = MD5.new(data.encode('utf-8'))
# SIGNATURE_ALGORITHM = "SHA1withRSA"
# hash_obj = SHA1.new(data.encode('utf-8'))
# SIGNATURE_ALGORITHM = "SHA256withRSA"
# hash_obj = SHA256.new(data.encode('utf-8')) signature = base64.b64encode(signer.sign(hash_obj))
return signature if __name__ == '__main__':
data = "phone=15811352072&timestamp=1612496512540&device=Android"
res_sign1 = RSA_sign(data)
signature = res_sign1.decode('utf8')
print(signature)

实现SHA1withRSA 签名

from Crypto.PublicKey import RSA
from Crypto.Signature import PKCS1_v1_5
from Crypto.Hash import MD5, SHA1, SHA256
import base64
from flask import current_app
import warnings
warnings.filterwarnings("ignore") def RSA_sign(data):
privateKey = '''MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBAIooE+9hmb6GvAUQ3j9FDRgrhWMmVWKepKNmQerrvovmySUSPzFHainDMl6HuQAWHCMI9O8S9kzqG3o9pnetpG7JShB6Oc9eX0kA6n0vLR2rYXNo5uVC29/Koqp250T7lzQ9bv6P0rkjIrqjTNIPVQXToyAwQcZQ5rVhUbtnP7YlAgMBAAECgYBpSzpGS0B9sPpDciOwXNQqA6FZe7G/w+D+l8TNYnaK8Y2Dr3ByAlerFJWi7hXVNwSivwTN4MnOvO3MMIha1gBnQCFStI4PjRv2qz6vsGfzZKFadUw3ngzGhT5UtIVAd+IFbbr4J+cGjGMmF5lIEaKrRCS5u4p11uf6LmhvbBTm0QJBAMQA7RYimdU9UStIm/RSkLQg6K89Om3S2AFXwqymiqhM4m6n7lRTE1xNX4pGm1BV8C/qL0d7AHbrJBFi+hN5onMCQQC0cjAXmKdnfhTo0IvYtzpXr77odBz4zt2Ake65ssBJEWFzle69MbWgkbrTKLLjGxBwM+C7fPDGNckqhlpjMGcHAkB+vcKRT6p9svqrrHX8FO+xKp6LwmHn5jD7HU6q6b47egvpVfnM2TNpujaPaXzBA/EeaqZL6IOyYfaer4vZ0At1AkEAqezuRQpIezlMT4I0b7z8gB7MVPMjZVrJVI4YlV8znJt1ffevfxMUy0Tw/nDRJPUTodX4yBZ8VuvHqPgknkuyeQJBALYpXGOH/GjlSVtnhq7eZxvoEqiBLawW5k7Rl1IyNdGR2qxY/nnoCyP2mMCs1Ba05sCcX08zzOzMPvttbSyjqPI=''' private_keyBytes = base64.b64decode(privateKey)
priKey = RSA.importKey(private_keyBytes)
# priKey = RSA.importKey(privateKey)
signer = PKCS1_v1_5.new(priKey,)
# SIGNATURE_ALGORITHM = "MD5withRSA"
# hash_obj = MD5.new(data.encode('utf-8'))
# SIGNATURE_ALGORITHM = "SHA1withRSA"
hash_obj = SHA1.new(data.encode('utf-8'))
# SIGNATURE_ALGORITHM = "SHA256withRSA"
# hash_obj = SHA256.new(data.encode('utf-8')) signature = base64.b64encode(signer.sign(hash_obj))
return signature if __name__ == '__main__':
data = "phone=15811352072&timestamp=1612496512540&device=Android"
res_sign1 = RSA_sign(data)
signature = res_sign1.decode('utf8')
print(signature)

SHA256withRSA签名

from Crypto.PublicKey import RSA
from Crypto.Signature import PKCS1_v1_5
from Crypto.Hash import MD5, SHA1, SHA256
import base64
from flask import current_app
import warnings
warnings.filterwarnings("ignore") def RSA_sign(data):
privateKey = '''MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBAIooE+9hmb6GvAUQ3j9FDRgrhWMmVWKepKNmQerrvovmySUSPzFHainDMl6HuQAWHCMI9O8S9kzqG3o9pnetpG7JShB6Oc9eX0kA6n0vLR2rYXNo5uVC29/Koqp250T7lzQ9bv6P0rkjIrqjTNIPVQXToyAwQcZQ5rVhUbtnP7YlAgMBAAECgYBpSzpGS0B9sPpDciOwXNQqA6FZe7G/w+D+l8TNYnaK8Y2Dr3ByAlerFJWi7hXVNwSivwTN4MnOvO3MMIha1gBnQCFStI4PjRv2qz6vsGfzZKFadUw3ngzGhT5UtIVAd+IFbbr4J+cGjGMmF5lIEaKrRCS5u4p11uf6LmhvbBTm0QJBAMQA7RYimdU9UStIm/RSkLQg6K89Om3S2AFXwqymiqhM4m6n7lRTE1xNX4pGm1BV8C/qL0d7AHbrJBFi+hN5onMCQQC0cjAXmKdnfhTo0IvYtzpXr77odBz4zt2Ake65ssBJEWFzle69MbWgkbrTKLLjGxBwM+C7fPDGNckqhlpjMGcHAkB+vcKRT6p9svqrrHX8FO+xKp6LwmHn5jD7HU6q6b47egvpVfnM2TNpujaPaXzBA/EeaqZL6IOyYfaer4vZ0At1AkEAqezuRQpIezlMT4I0b7z8gB7MVPMjZVrJVI4YlV8znJt1ffevfxMUy0Tw/nDRJPUTodX4yBZ8VuvHqPgknkuyeQJBALYpXGOH/GjlSVtnhq7eZxvoEqiBLawW5k7Rl1IyNdGR2qxY/nnoCyP2mMCs1Ba05sCcX08zzOzMPvttbSyjqPI=''' private_keyBytes = base64.b64decode(privateKey)
priKey = RSA.importKey(private_keyBytes)
# priKey = RSA.importKey(privateKey)
signer = PKCS1_v1_5.new(priKey,)
# SIGNATURE_ALGORITHM = "MD5withRSA"
# hash_obj = MD5.new(data.encode('utf-8'))
# SIGNATURE_ALGORITHM = "SHA1withRSA"
# hash_obj = SHA1.new(data.encode('utf-8'))
# SIGNATURE_ALGORITHM = "SHA256withRSA"
hash_obj = SHA256.new(data.encode('utf-8')) signature = base64.b64encode(signer.sign(hash_obj))
return signature if __name__ == '__main__':
data = "phone=15811352072&timestamp=1612496512540&device=Android"
res_sign1 = RSA_sign(data)
signature = res_sign1.decode('utf8')
print(signature)

最原始方法生成公钥和私钥生成通过(crtCoefficient,primeExponentP,primeP,modulus.....)

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import padding
import base64
import binascii """
"crtCoefficient": 84432856058147832764138703472538317942464795044718601494587194148378563942685,
"primeExponentP": 55430473883101152246097615323756881862950432952434504984590276578045386834041,
"primeExponentQ": 41230473446336148758497170998210312513410109720579275453308960734626604833351,
"primeP": 109910049826842557628963433845850622251367013324570378590557090526907918339059,
"primeQ": 106061213575088596820097699717773256317123615840075518129430834072505546216719,
"publicExponent": 65537,
"modulus": 11657193268733377953496174345085266431511790176736829620324311319483544845433376888008449023832068012445414318729055242605500539982129558003843075736527421,
"privateExponent": 3398954883077133822319581237472486629533832773658606240974980011352534575146593099441248529746198644134125073285288483505741834384822184028018785454859181
""" def gen_rsa_keypair():
d = 3398954883077133822319581237472486629533832773658606240974980011352534575146593099441248529746198644134125073285288483505741834384822184028018785454859181
dmp1 = 55430473883101152246097615323756881862950432952434504984590276578045386834041
dmq1 = 41230473446336148758497170998210312513410109720579275453308960734626604833351
iqmp = 84432856058147832764138703472538317942464795044718601494587194148378563942685
p = 109910049826842557628963433845850622251367013324570378590557090526907918339059
q = 106061213575088596820097699717773256317123615840075518129430834072505546216719 # public key numbers
e = 65537
n = 11657193268733377953496174345085266431511790176736829620324311319483544845433376888008449023832068012445414318729055242605500539982129558003843075736527421 public_numbers = rsa.RSAPublicNumbers(e, n)
private_numbers = rsa.RSAPrivateNumbers(p, q, d, dmp1, dmq1, iqmp,public_numbers)
private_key = default_backend().load_rsa_private_numbers(private_numbers) pubkey = public_numbers.public_key(default_backend()) puem = pubkey.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo
)
# 将PEM个数的数据写入文本文件中
with open("pu_key.pem", 'w+') as f:
f.writelines(puem.decode()) rpem = private_key.private_bytes(encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncryption())
with open("pr_key.pem", 'w+') as f:
f.writelines(rpem.decode()) return if __name__ == '__main__':
gen_rsa_keypair()

DES

简介

这是一个分组加密算法,解密和加密是同一个算法,可逆的

DES加密与解密以及hex输出和bs64格式输出

import pyDes
import base64 Key = "12345678" #加密的key Iv = None #偏移量 def bytesToHexString(bs):
'''
bytes转16进制
'''
return ''.join(['%02X ' % b for b in bs])
def hexStringTobytes(str):
'''16进制转bytes'''
str = str.replace(" ", "")
return bytes.fromhex(str) # 加密
def encrypt_str(data):
# 加密方法
#padmode填充方式
#pyDes.ECB模式
method = pyDes.des(Key, pyDes.ECB, Iv, pad=None, padmode=pyDes.PAD_PKCS5)
# 执行加密码 hex输出
k = method.encrypt(data)
data = bytesToHexString(k).replace(' ','')
#bs64手粗
#data =base64.b64encode(k)
return data # 解密
def decrypt_str(data):
method = pyDes.des(Key, pyDes.ECB, Iv, pad=None, padmode=pyDes.PAD_PKCS5)
k =hexStringTobytes(data)
#bs64
#k = base64.b64decode(data)
return method.decrypt(k) Encrypt = encrypt_str("aaa")
print(Encrypt)
Decrypt = decrypt_str(Encrypt)
print(Decrypt)

3DES

import hashlib, base64
import json
from cryptography.hazmat.primitives.padding import PKCS7
from cryptography.hazmat.primitives.ciphers import algorithms
from Crypto.Cipher import DES3 def pkcs7padding(text):
"""
明文使用PKCS7填充
最终调用DES3加密方法时,传入的是一个byte数组,要求是16的整数倍,因此需要对明文进行处理
:param text: 待加密内容(明文)
:return:
"""
bs = DES3.block_size # 16
length = len(text)
bytes_length = len(bytes(text, encoding='utf-8'))
# tips:utf-8编码时,英文占1个byte,而中文占3个byte
padding_size = length if (bytes_length == length) else bytes_length
padding = bs - padding_size % bs
# tips:chr(padding)看与其它语言的约定,有的会使用'\0'
padding_text = chr(padding) * padding
return text + padding_text def pkcs7_unpad(content):
"""
解密时候用
:param content:
:return:
"""
if not isinstance(content, bytes):
content = content.encode()
pad = PKCS7(algorithms.DES3.block_size).unpadder()
pad_content = pad.update(content) + pad.finalize()
return pad_content def encrypt(key, content):
"""
DES3加密
key,iv使用同一个
模式cbc
填充pkcs7
:param key: 密钥
:param content: 加密内容
:return:
"""
key_bytes = bytes(key, encoding='utf-8')
iv = key_bytes
cipher = DES3.new(key_bytes, DES3.MODE_ECB)
# 处理明文
content_padding = pkcs7padding(content)
# 加密
encrypt_bytes = cipher.encrypt(bytes(content_padding, encoding='utf-8'))
# 重新编码
result = str(base64.b64encode(encrypt_bytes), encoding='utf-8')
return result def decrypt(key,text):
key_bytes = bytes(key, encoding='utf-8')
iv = key_bytes
cryptos = DES3.new(key_bytes, DES3.MODE_ECB)
data = cryptos.decrypt(text)
return json.loads(pkcs7_unpad(data))

AES

简介

和DES差不多,可逆的

AES_ECB_pkcs5padding(该模板不兼容中文)

from Crypto.Cipher import AES
import base64 class Aes_ECB(object):
def __init__(self):
self.key = 'XXXXXXXXXXX' #秘钥
self.MODE = AES.MODE_ECB
self.BS = AES.block_size
self.pad = lambda s: s + (self.BS - len(s) % self.BS) * chr(self.BS - len(s) % self.BS)
self.unpad = lambda s: s[0:-ord(s[-1])] # str不是16的倍数那就补足为16的倍数
def add_to_16(value):
while len(value) % 16 != 0:
value += '\0'
return str.encode(value) # 返回bytes def AES_encrypt(self, text):
aes = AES.new(Aes_ECB.add_to_16(self.key), self.MODE) # 初始化加密器
encrypted_text = str(base64.encodebytes(aes.encrypt(Aes_ECB.add_to_16(self.pad(text)))),
encoding='utf-8').replace('\n', '') # 这个replace大家可以先不用,然后在调试出来的结果中看是否有'\n'换行符
# 执行加密并转码返回bytes
return encrypted_text

AES_ECB_pkcs7padding(支持中文)

import hashlib, base64
from Crypto.Cipher import AES
from cryptography.hazmat.primitives.padding import PKCS7
from cryptography.hazmat.primitives.ciphers import algorithms def pkcs7padding(text):
"""
明文使用PKCS7填充
最终调用AES加密方法时,传入的是一个byte数组,要求是16的整数倍,因此需要对明文进行处理
:param text: 待加密内容(明文)
:return:
"""
bs = AES.block_size # 16
length = len(text)
bytes_length = len(bytes(text, encoding='utf-8'))
# tips:utf-8编码时,英文占1个byte,而中文占3个byte
padding_size = length if (bytes_length == length) else bytes_length
padding = bs - padding_size % bs
# tips:chr(padding)看与其它语言的约定,有的会使用'\0'
padding_text = chr(padding) * padding
return text + padding_text def pkcs7_unpad(content):
"""
解密时候用
:param content:
:return:
"""
if not isinstance(content, bytes):
content = content.encode()
pad = PKCS7(algorithms.AES.block_size).unpadder()
pad_content = pad.update(content) + pad.finalize()
return pad_content def encrypt(key, content):
"""
AES加密
key,iv使用同一个
模式cbc
填充pkcs7
:param key: 密钥
:param content: 加密内容
:return:
"""
key_bytes = bytes(key, encoding='utf-8')
iv = key_bytes
cipher = AES.new(key_bytes, AES.MODE_ECB)
# 处理明文
content_padding = pkcs7padding(content)
# 加密
encrypt_bytes = cipher.encrypt(bytes(content_padding, encoding='utf-8'))
# 重新编码
result = str(base64.b64encode(encrypt_bytes), encoding='utf-8')
return result def decrypt(key,text):
key_bytes = bytes(key, encoding='utf-8')
iv = key_bytes
cryptos = AES.new(key_bytes, AES.MODE_ECB)
data = cryptos.decrypt(text)
return json.loads(pkcs7_unpad(data))

识别是AES_128\192\256怎么识别

根据key的长度进行识别
128 16位
192 24位
256 32位
#基本上不足的部分都是以0进行填充

ECB和CBC在代码实现上的区别

CBC相比ECB多一个偏移量,至于其他地方代码区别不大

gzip输出解密

# -*- coding: utf-8 -*-
from cryptography.hazmat.primitives.ciphers import algorithms
from cryptography.hazmat.primitives.ciphers import Cipher
from cryptography.hazmat.primitives.ciphers import modes
from cryptography.hazmat.backends import default_backend class AES_GZIP:
@staticmethod
def gzip_decode(content):
buf = io.BytesIO(content)
gf = gzip.GzipFile(fileobj=buf)
content = gf.read()
return content def pwd_decrypt(self, content):
key = b'XXXX'
iv = b'XXXXX'
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=default_backend())
decryptor = cipher.decryptor()
data = decryptor.update(content)
return self.gzip_decode(data)

SM2/SM4

GMSSL模块介绍

GmSSL是一个开源的加密包的python实现,支持SM2/SM3/SM4等国密(国家商用密码)算法、项目采用对商业应用友好的类BSD开源许可证,开源且可以用于闭源的商业应用。

安装模块

pip install gmssl

https://github.com/duanhongyi/gmssl/blob/master/README.md官方文档

SM2算法

RSA算法的危机在于其存在亚指数算法,对ECC算法而言一般没有亚指数攻击算法 SM2椭圆曲线公钥密码算法:我国自主知识产权的商用密码算法,是ECC(Elliptic Curve Cryptosystem)算法的一种,基于椭圆曲线离散对数问题,计算复杂度是指数级,求解难度较大,同等安全程度要求下,椭圆曲线密码较其他公钥算法所需密钥长度小很多。

gmssl是包含国密SM2算法的Python实现, 提供了 encryptdecrypt等函数用于加密解密, 用法如下:

  • 初始化CryptSM2
import base64
import binascii
from gmssl import sm2, func
#16进制的公钥和私钥
private_key = '00B9AB0B828FF68872F21A837FC303668428DEA11DCD1B24429D0C99E24EED83D5'
public_key = 'B9C9A6E04E9C91F7BA880429273747D7EF5DDEB0BB2FF6317EB00BEF331A83081A6994B8993F3F5D6EADDDB81872266C87C018FB4162F5AF347B483E24620207'
sm2_crypt = sm2.CryptSM2(
public_key=public_key, private_key=private_key)
  • encrypt和decrypt
#数据和加密后数据为bytes类型
data = b"111"
enc_data = sm2_crypt.encrypt(data)
dec_data =sm2_crypt.decrypt(enc_data)
assert dec_data == data
  • sign和verify
data = b"111" # bytes类型
random_hex_str = func.random_hex(sm2_crypt.para_len)
sign = sm2_crypt.sign(data, random_hex_str) # 16进制
assert sm2_crypt.verify(sign, data) # 16进制

SM4算法

国密SM4(无线局域网SMS4)算法, 一个分组算法, 分组长度为128bit, 密钥长度为128bit, 算法具体内容参照SM4算法。

gmssl是包含国密SM4算法的Python实现, 提供了 encrypt_ecbdecrypt_ecbencrypt_cbcdecrypt_cbc等函数用于加密解密, 用法如下:

  • 初始化CryptSM4
from gmssl.sm4 import CryptSM4, SM4_ENCRYPT, SM4_DECRYPT

key = b'3l5butlj26hvv313'
value = b'111' # bytes类型
iv = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' # bytes类型
crypt_sm4 = CryptSM4()
  • encrypt_ecb和decrypt_ecb
crypt_sm4.set_key(key, SM4_ENCRYPT)
encrypt_value = crypt_sm4.crypt_ecb(value) # bytes类型
crypt_sm4.set_key(key, SM4_DECRYPT)
decrypt_value = crypt_sm4.crypt_ecb(encrypt_value) # bytes类型
assert value == decrypt_value
  • encrypt_cbc和decrypt_cbc
crypt_sm4.set_key(key, SM4_ENCRYPT)
encrypt_value = crypt_sm4.crypt_cbc(iv , value) # bytes类型
crypt_sm4.set_key(key, SM4_DECRYPT)
decrypt_value = crypt_sm4.crypt_cbc(iv , encrypt_value) # bytes类型
assert value == decrypt_value

其他模块

base64

import base64   #base64也是用来加密的,但是这个是可以解密的
s = "password"
print(base64.b64encode(s.encode()) ) #加密

uuid

#有时候你会看到一些比如xxxx-xxxx-xxx-xxx误以为是加密其实很多是uuid模块自动生成的
随机数格式为:xxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx python的uuid模块提供UUID类和函数uuid1(), uuid3(), uuid4(), uuid5() 1.uuid.uuid1([node[, clock_seq]])
基于时间戳 使用主机ID, 序列号, 和当前时间来生成UUID, 可保证全球范围的唯一性. 但由于使用该方法生成的UUID中包含有主机的网络地址, 因此可能危及隐私. 该函数有两个参数, 如果 node 参数未指定, 系统将会自动调用 getnode() 函数来获取主机的硬件地址. 如果 clock_seq 参数未指定系统会使用一个随机产生的14位序列号来代替. 2.uuid.uuid3(namespace, name)
基于名字的MD5散列值 通过计算命名空间和名字的MD5散列值来生成UUID, 可以保证同一命名空间中不同名字的唯一性和不同命名空间的唯一性, 但同一命名空间的同一名字生成的UUID相同. 3.uuid.uuid4()
基于随机数 通过随机数来生成UUID. 使用的是伪随机数有一定的重复概率. 4.uuid.uuid5(namespace, name)
基于名字的SHA-1散列值

MD5加盐

import hashlib

#注意加密顺序
m=hashlib.md5('加密内容'.encode('utf8'))
m.update(b"盐")
sign = m.hexdigest()

字符串和16进制字符串之间转换

import binascii

binascii.b2a_hex('字符串'.encode())  输出b'e5ad97e7aca6e4b8b2'
binascii.a2b_hex('e5ad97e7aca6e4b8b2').decode() 输出 '字符串'

HmacSHA256加密算法

from hashlib import sha256
import hmac def get_sign(data, key):
key = key.encode('utf-8')
message = data.encode('utf-8')
sign = base64.b64encode(hmac.new(key, message, digestmod=sha256).digest())
sign = str(sign, 'utf-8')
print(sign)
return sign

转载

转载于 小小咸鱼YwY

Python常用加密解密算法的更多相关文章

  1. JAVA常用加密解密算法Encryption and decryption

    加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容.大体上分为双向加密和单向加密,而双向加密又分为对称加密和非对称加密(有些 ...

  2. 常用加密解密算法【RSA、AES、DES、MD5】介绍和使用

    内容不转载了,加上链接https://blog.csdn.net/u013565368/article/details/53081195?_t=t

  3. 使用python进行加密解密AES算法

    使用python进行加密解密AES算法-代码分享-PYTHON开发者社区-pythoner.org 使用python进行加密解密AES算法 TY 发布于 2011-09-26 21:36:53,分类: ...

  4. ASP.NET常用加密解密方法

    ASP.NET常用加密解密方法 一.MD5加密解密 1.加密 C# 代码           public static string ToMd5(string clearString)        ...

  5. 数据的加密传输——单片机上实现TEA加密解密算法

    各位大侠在做数据传输时,有没有考虑过把数据加密起来进行传输,若在串口或者无线中把所要传的数据加密起来,岂不是增加了通信的安全性.常用的加密解密算法比如DES.RSA等,受限于单片机的内存和运算速度,实 ...

  6. 2019-2-20C#开发中常用加密解密方法解析

    C#开发中常用加密解密方法解析 一.MD5加密算法 我想这是大家都常听过的算法,可能也用的比较多.那么什么是MD5算法呢?MD5全称是 message-digest algorithm 5[|ˈmes ...

  7. 关于Java中常用加密/解密方法的实现

    安全问题已经成为一个越来越重要的问题,在Java中如何对重要数据进行加密解密是本文的主要内容. 一.常用的加密/解密算法 1.Base64 严格来说Base64并不是一种加密/解密算法,而是一种编码方 ...

  8. php实现的三个常用加密解密功能函数示例

    目录 算法一: 算法二: 算法三(改进第一个加密之后的算法) 本文实例讲述了php实现的三个常用加密解密功能函数.分享给大家供大家参考,具体如下: 算法一: //加密函数 function lock_ ...

  9. 【Java安全】关于Java中常用加密/解密方法的实现

    安全问题已经成为一个越来越重要的问题,在Java中如何对重要数据进行加密解密是本文的主要内容. 一.常用的加密/解密算法 1.Base64 严格来说Base64并不是一种加密/解密算法,而是一种编码方 ...

随机推荐

  1. 用tinyxml2读写xml文件_C++实现

    下载源代码 开源代码github地址: https://github.com/leethomason/tinyxml2 添加工程文件 将源代码目录中 tinyxml2.h 和 tinyxml2.cpp ...

  2. MySQL-库表操作详述

    一.库操作 创建库 create database 库名(charset utf8 对库的编码进行设置,不写就用默认值) 库名可以由字母.数字.下划线.特殊字符,要区分大小写,唯一性,不能使用关键字, ...

  3. idea导出jar包及坑

    导出基本步骤 1.打开项目结构,在artifact新建一个jar 2.然后填写主类和依赖 3.这里的坑: 4.查看 5.点击编译输出 6.得到jar包

  4. HCNP Routing&Switching之OSPF特殊区域

    前文我们了解了OSPF LSA更新规则以及路由汇总相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15231880.html:今天我们来聊一聊OSPF的 ...

  5. ELK学习之Logstash+Kafka篇

    上一篇介绍了一下Logstash的数据处理过程以及一些基本的配置功能,同时也提到了Logstash作为一个数据采集端,支持对接多种输入数据源,其中就包括Kafka.那么这次的学习不妨研究一下Logst ...

  6. Nginx总结(九)Nginx服务器高性能优化的配置--轻松实现10万并发访问量

    前面讲了如何配置Nginx虚拟主机,如何配置服务日志等很多基础的内容,大家可以去这里看看nginx系列文章:https://www.cnblogs.com/zhangweizhong/category ...

  7. Collections集合工具类和可变参数

    Collections常用的API: public static <T> boolean addAll(Collection<? super T> c, T... elemen ...

  8. Elasticsearch的基本使用

    1. 概述 之前聊了一下 Elasticsearch 的安装,今天我们来说说 Elasticsearch 的基本使用. 2. Elasticsearch索引的使用 索引(index)相当于是mysql ...

  9. Django学习day06随堂笔记

    每日测验 """ 今日考题 1.什么是FBV与CBV,能不能试着解释一下CBV的运作原理 2.模版语法的传值需要注意什么,常见过滤器及标签有哪些 3.自定义过滤器,标签, ...

  10. 引人遐想,用 Python 获取你想要的 “某个人” 摄像头照片

    仅用来学习,希望给你们有提供到学习上的作用. 1.安装库 需要安装python3.5以上版本,在官网下载即可.然后安装库opencv-python,安装方式为打开终端输入命令行. 2.更改收件人和发件 ...