鉴于内容过多,先上太长不看版:

  • grpc 就是请求流&响应流特殊一点的 Http 请求,性能和 WebAPI 比起来只快在 Protobuf 上;

附上完整试验代码:GrpcWithOutSDK.zip

另附小Demo,基于 ControllerHttpClient 的在线聊天室:ChatRoomOnController.zip


本文内容有点长,涉及较多基础知识点,某些结论可能直接得出,没有上下文,限于篇幅,不会在本文内详细描述,如有疑惑请友好交流或尝试搜索互联网。

本文仅代表个人试验结果和观点,可能会有偏颇,请自行判断。


一、背景

个人经常在网上看到 grpc高性能 字眼的文章;有幸也面试过一些同僚,问及 grpc 对比 WebAPI,答案都是更快、性能更高;至于能快多少,答案就各种各样了,几倍到几十倍的回答都有,但大概是统一的:“grpc 要快得多”。那么具体快在哪里呢?回答我就觉得不那么准确了。

现在我们就来探索一下 grpcWebAPI 的差别是什么? grpc 快在哪里?

二、验证请求模型

就是个常规的 asp.net core 使用 grpc 的步骤

创建服务端

  • 建立一个 asp.net core grpc 项目

  • 添加一个测试的 reverse.proto 用于测试 grpc 的几种通讯模式,并为其生成服务端
syntax = "proto3";

option csharp_namespace = "GrpcWithOutSDK";

package reverse;

service Reverse {
rpc Simple (Request) returns (Reply);
rpc ClientSide (stream Request) returns (Reply);
rpc ServerSide (Request) returns (stream Reply);
rpc Bidirectional (stream Request) returns (stream Reply);
} message Request {
string message = 1;
} message Reply {
string message = 1;
}
  • 新建 ReverseService.cs 实现具体的方法逻辑
public class ReverseService : Reverse.ReverseBase
{
private readonly ILogger<ReverseService> _logger; public ReverseService(ILogger<ReverseService> logger)
{
_logger = logger;
} private static Reply CreateReplay(Request request)
{
return new Reply
{
Message = new string(request.Message.Reverse().ToArray())
};
} private void DisplayReceivedMessage(Request request, [CallerMemberName] string? methodName = null)
{
_logger.LogInformation($"{methodName} Received: {request.Message}");
} public override async Task Bidirectional(IAsyncStreamReader<Request> requestStream, IServerStreamWriter<Reply> responseStream, ServerCallContext context)
{
while (await requestStream.MoveNext())
{
DisplayReceivedMessage(requestStream.Current);
await responseStream.WriteAsync(CreateReplay(requestStream.Current));
}
} public override async Task<Reply> ClientSide(IAsyncStreamReader<Request> requestStream, ServerCallContext context)
{
var total = 0;
while (await requestStream.MoveNext())
{
total++;
DisplayReceivedMessage(requestStream.Current);
}
return new Reply
{
Message = $"{nameof(ServerSide)} Received Over. Total: {total}"
};
} public override async Task ServerSide(Request request, IServerStreamWriter<Reply> responseStream, ServerCallContext context)
{
DisplayReceivedMessage(request); for (int i = 0; i < 5; i++)
{
await responseStream.WriteAsync(CreateReplay(request));
}
} public override Task<Reply> Simple(Request request, ServerCallContext context)
{
return Task.FromResult(CreateReplay(request));
}
}

最后记得 app.MapGrpcService<ReverseService>();

创建客户端

  • 新建一个控制台项目,并添加Google.ProtobufGrpc.Net.ClientGrpc.Tools这几个包的引用
  • 引用之前写好的 reverse.proto 并为其生成客户端
  • 写几个用于测试各种通讯模式的方法
private static async Task Bidirectional(Reverse.ReverseClient client)
{
var stream = client.Bidirectional(); var sendTask = Task.Run(async () =>
{
for (int i = 0; i < 10; i++)
{
await stream.RequestStream.WriteAsync(new() { Message = $"{nameof(Bidirectional)}-{i}" });
}
await stream.RequestStream.CompleteAsync();
}); var receiveTask = Task.Run(async () =>
{
while (await stream.ResponseStream.MoveNext(default))
{
DisplayReceivedMessage(stream.ResponseStream.Current);
}
}); await Task.WhenAll(sendTask, receiveTask);
} private static async Task ClientSide(Reverse.ReverseClient client)
{
var stream = client.ClientSide(); for (int i = 0; i < 5; i++)
{
await stream.RequestStream.WriteAsync(new() { Message = $"{nameof(ClientSide)}-{i}" });
} await stream.RequestStream.CompleteAsync(); var reply = await stream.ResponseAsync; DisplayReceivedMessage(reply);
} private static async Task Sample(Reverse.ReverseClient client)
{
var reply = await client.SimpleAsync(new() { Message = nameof(Sample) });
DisplayReceivedMessage(reply);
} private static async Task ServerSide(Reverse.ReverseClient client)
{
var stream = client.ServerSide(new() { Message = nameof(ServerSide) }); while (await stream.ResponseStream.MoveNext(default))
{
DisplayReceivedMessage(stream.ResponseStream.Current);
}
}
  • 测试代码
const string Host = "http://localhost:5035";
var channel = GrpcChannel.ForAddress(Host);
var grpcClient = new Reverse.ReverseClient(channel); await Sample(grpcClient);
await ClientSide(grpcClient);
await ServerSide(grpcClient);
await Bidirectional(grpcClient);

进行验证

  • 将服务端的 Microsoft.AspNetCore 日志等级调整为 Information 以打印请求日志
  • 运行服务端与客户端
  • 不出意外的话服务端会看到如下输出(为便于观察,已按方法进行分段,不重要的信息已省略)
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/Simple application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/Simple'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/Simple'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/Simple application/grpc - - 200 - application/grpc 99.1956ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/ClientSide application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/ClientSide'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/ClientSide'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/ClientSide application/grpc - - 200 - application/grpc 21.9445ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/ServerSide application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/ServerSide'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/ServerSide'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/ServerSide application/grpc - - 200 - application/grpc 12.7054ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/Bidirectional application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/Bidirectional'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/Bidirectional'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/Bidirectional application/grpc - - 200 - application/grpc 41.2414ms

对日志进行一些分析我们可以发现:

  • 所有类型的 grpc 通讯模式执行逻辑都是相同的,都是一次完整的http请求周期;
  • 请求的协议使用的是 HTTP/2
  • 方法都为 POST
  • 所有grpc方法都映射到了对应的终结点 /{package名}.{service名}/{方法名}
  • 请求&响应的 ContentType 都为 application/grpc

三、进一步验证请求模型

如果我们上一步的分析是对的,那么数据只能承载在 请求流 & 响应流 中,我们可以尝试获取流中的数据,进一步分析具体细节;

dump请求&响应数据

借助 asp.net core 的中间件,我们可以比较容易的进行 请求流 & 响应流 的内容 dump

请求流 是只读的,响应流 是只写的,我们需要两个代理流替换原有的流,进行数据dump,将数据保存到 MemoryStream 中,以便我们观察;

这两个流分别为 ReadCacheProxyStream.csWriteCacheProxyStream.cs,直接上代码:

public class ReadCacheProxyStream : Stream
{
private readonly Stream _innerStream; public MemoryStream CachedStream { get; } = new MemoryStream(1024); public override bool CanRead => _innerStream.CanRead; public override bool CanSeek => false; public override bool CanWrite => false; public override long Length => _innerStream.Length; public override long Position { get => _innerStream.Length; set => throw new NotSupportedException(); } public ReadCacheProxyStream(Stream innerStream)
{
_innerStream = innerStream;
} public override void Flush() => throw new NotSupportedException(); public override Task FlushAsync(CancellationToken cancellationToken) => _innerStream.FlushAsync(cancellationToken); public override int Read(byte[] buffer, int offset, int count) => throw new NotSupportedException(); public override async ValueTask<int> ReadAsync(Memory<byte> buffer, CancellationToken cancellationToken = default)
{
var len = await _innerStream.ReadAsync(buffer, cancellationToken);
if (len > 0)
{
CachedStream.Write(buffer.Span.Slice(0, len));
}
return len;
} public override long Seek(long offset, SeekOrigin origin) => throw new NotSupportedException(); public override void SetLength(long value) => throw new NotSupportedException(); public override void Write(byte[] buffer, int offset, int count) => throw new NotSupportedException();
} public class WriteCacheProxyStream : Stream
{
private readonly Stream _innerStream; public MemoryStream CachedStream { get; } = new MemoryStream(1024); public override bool CanRead => false; public override bool CanSeek => false; public override bool CanWrite => _innerStream.CanWrite; public override long Length => _innerStream.Length; public override long Position { get => _innerStream.Length; set => throw new NotSupportedException(); } public WriteCacheProxyStream(Stream innerStream)
{
_innerStream = innerStream;
} public override void Flush() => throw new NotSupportedException(); public override Task FlushAsync(CancellationToken cancellationToken) => _innerStream.FlushAsync(cancellationToken); public override int Read(byte[] buffer, int offset, int count) => throw new NotSupportedException(); public override long Seek(long offset, SeekOrigin origin) => throw new NotSupportedException(); public override void SetLength(long value) => throw new NotSupportedException(); public override void Write(byte[] buffer, int offset, int count) => throw new NotSupportedException(); public override async ValueTask WriteAsync(ReadOnlyMemory<byte> buffer, CancellationToken cancellationToken = default)
{
await _innerStream.WriteAsync(buffer, cancellationToken);
CachedStream.Write(buffer.Span);
}
}
  • 在请求管道中替换流

    将如下中间件添加到请求管道的最开始
app.Use(async (context, next) =>
{
var originRequestBody = context.Request.Body;
var originResponseBody = context.Response.Body;
var requestCacheStream = new ReadCacheProxyStream(originRequestBody);
var responseCacheStream = new WriteCacheProxyStream(originResponseBody); context.Request.Body = requestCacheStream;
context.Response.Body = responseCacheStream;
try
{
await next();
}
finally
{
await context.Response.CompleteAsync(); //要不要还回去不在这里进行讨论了
context.Request.Body = originRequestBody;
context.Response.Body = originResponseBody; var requestData = requestCacheStream.CachedStream.ToArray();
var responseData = requestCacheStream.CachedStream.ToArray();
}
});
  • 接下来在 finally 块的最后打上断点,然后运行服务端和客户端,即可在中间件中通过 requestDataresponseData 观察数据交互

分析数据结构


理论上我们可以直接使用 Protobuf 进行解析,不过这里我们目的是为了手动实现一个超级简单的编码器。。。


客户端执行 Sample 方法,并在服务端获取 requestDataresponseData

分析requestData

这个样子太不直观了,由于我们的消息定义 Request 只有一个 string 类型的字段,那么如果之前猜测正确,这个数据里面必定有对应字符串。我们直接尝试拿来看看:

果然有对应的数据 Sample ,我们尝试去掉多余的数据看看:

那么前7个byte是干什么的呢,我们改一下请求的消息内容,将 Sample 修改为 Sample1 再次进行分析:

这样就比较明显了,稍做分析,我们可以先做个简单的总结,第5个字节为消息的总长度,第6个字节应该是字段描述之类的,当前消息体固定为10,第7个字节为Request.message字段的长度

不过这样有点草率,byte最大为255,我们再探索一下内容超过255时,是什么结构。将 Sample 修改为 50 个重复的 Sample 再次进行分析:

情况一下就复杂了。。。不过第6个字节仍然是10,那么前5个字节应该有描述消息总长度,[0,0,0,1,47] 和长度 303 (注:308-5)之间的关系是什么呢;稍微试了一下,数据的第1个字节目前假设固定为0,第2-5字节应该是一个大端序uint32,用来声明消息总长度但是第78个字节如何转换为300,就有点难琢磨了。。。算了,我们先不处理内容过大的情况吧(具体编码逻辑可参见 protocol-buffers-encoding

分析responseData

查看后发现结构和 requestData 是一样的(因为 RequestReply 消息声明的结构相同),这里就不多描述了,可以自行Debug查看。

分析流式请求的requestDataresponseData

分析后发现流式请求里面的多个消息每个都是单个消息的结构,然后顺序放到请求或响应流中,这里也不多描述了,可以自行Debug进行查看,直接上基于以上总结的解码器代码:

public static IEnumerable<string> ReadMessages(byte[] originData)
{
var slice = originData.AsMemory(); while (!slice.IsEmpty)
{
var messageLen = BinaryPrimitives.ReadInt32BigEndian(slice.Slice(1, 4).Span); var messageData = slice.Slice(5, messageLen);
slice = slice.Slice(5 + messageLen); int len = messageData.Span[1];
var content = Encoding.UTF8.GetString(messageData.Slice(2, len).Span); yield return content;
}
}

然后在中间件中展示内容

TempMessageCodecUtil.DisplayMessages(requestData);
TempMessageCodecUtil.DisplayMessages(responseData);

再次运行程序,能够正确看到控制台直接输出的请求和响应消息内容,形如:

四、使用 Controller 实现能够与 Grpc Client SDK 交互的服务端

基于之前的分析,理论上我们只需要满足:

 - 请求的协议使用的是 `HTTP/2`;
- 方法都为 `POST`;
- 所有grpc方法都映射到了对应的终结点 `/{package名}.{service名}/{方法名}`;
- 请求&响应的 `ContentType` 都为 `application/grpc`;

然后正确的从请求流中解析数据结构,将正确的数据结构写入响应流,就可以响应 Grpc Client 的请求了。

  • 现在我们需要一个编码器,能够将字符串编码为 Reply 消息格式;以及一个解码器,从请求流中读取 Request 消息。直接上代码。编码器:
public static byte[] BuildMessage(string message)
{
var contentData = Encoding.UTF8.GetBytes(message);
if (contentData.Length > 127)
{
throw new ArgumentException();
}
var messageData = new byte[contentData.Length + 7];
Array.Copy(contentData, 0, messageData, 7, contentData.Length);
messageData[5] = 10;
messageData[6] = (byte)contentData.Length;
BinaryPrimitives.WriteInt32BigEndian(messageData.AsSpan().Slice(1), contentData.Length + 2);
return messageData;
}

解码器:

private async IAsyncEnumerable<string> ReadMessageAsync([EnumeratorCancellation] CancellationToken cancellationToken)
{
var pipeReader = Request.BodyReader; while (!cancellationToken.IsCancellationRequested)
{
var readResult = await pipeReader.ReadAsync(cancellationToken); var buffer = readResult.Buffer; if (readResult.IsCompleted
&& buffer.IsEmpty)
{
yield break;
} if (buffer.Length < 5)
{
pipeReader.AdvanceTo(buffer.Start, buffer.End);
continue;
} var messageBuffer = buffer.IsSingleSegment
? buffer.First
: buffer.ToArray(); var messageLen = BinaryPrimitives.ReadInt32BigEndian(messageBuffer.Slice(1, 4).Span); if (buffer.Length < messageLen + 5)
{
pipeReader.AdvanceTo(buffer.Start, buffer.End);
continue;
} messageBuffer = messageBuffer.Slice(5); int len = messageBuffer.Span[1];
var content = Encoding.UTF8.GetString(messageBuffer.Slice(2, len).Span); yield return content; pipeReader.AdvanceTo(readResult.Buffer.GetPosition(7 + len));
}
}
  • 实现一个 ReverseController.cs ,映射 reverse.proto 中对应的方法,实现和 ReverseService.cs 中相同的执行逻辑。代码如下:
[Route("reverse.Reverse")]
[ApiController]
public class ReverseController : ControllerBase
{
[HttpPost]
[Route(nameof(Bidirectional))]
public async Task Bidirectional()
{
await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
DisplayReceivedMessage(item);
await ReplayReverseAsync(item);
}
} [HttpPost]
[Route(nameof(ClientSide))]
public async Task ClientSide()
{
var total = 0; await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
total++;
DisplayReceivedMessage(item);
} await ReplayAsync($"{nameof(ServerSide)} Received Over. Total: {total}");
} [HttpPost]
[Route(nameof(ServerSide))]
public async Task ServerSide()
{
string message = null!;
await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
message = item;
} DisplayReceivedMessage(message); for (int i = 0; i < 5; i++)
{
await ReplayReverseAsync(message);
}
} [HttpPost]
[Route(nameof(Simple))]
public async Task Simple()
{
string message = null!;
await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
message = item;
} DisplayReceivedMessage(message);
await ReplayReverseAsync(message);
} private async Task ReplayAsync(string message)
{
if (!Response.HasStarted)
{
Response.Headers.ContentType = "application/grpc";
Response.AppendTrailer("grpc-status", "0"); await Response.StartAsync();
} await Response.Body.WriteAsync(TempMessageCodecUtil.BuildMessage(message));
} private Task ReplayReverseAsync(string rawMessage) => ReplayAsync(new string(rawMessage.Reverse().ToArray())); //省略其他信息
}

最后记得 services.AddControllers()app.MapControllers() 并取消Grpc的ServiceMap;

此时分别使用 ControllerGrpcService 运行服务端,并查看客户端日志,可以看到运行结果相同,如图:

五、使用 HttpClient 实现能够与 Grpc Server 交互的客户端

在上面我们已经使用原生 Controller 实现了一个可以让客户端正常运行的服务端,现在我们不使用 Grpc SDK 来实现一个可以和服务端交互的客户端。

  • 服务端获取请求流和响应流比较简单,目前 HttpClient 没有直接获取请求流的办法,我们需要从 HttpContentSerializeToStreamAsync 方法中获取到真正的请求流。具体细节不在这里赘述,直接上代码:
class LongAliveHttpContent : HttpContent
{
private readonly TaskCompletionSource<Stream> _streamGetCompletionSource = new(TaskCreationOptions.RunContinuationsAsynchronously);
private readonly TaskCompletionSource _taskCompletionSource = new(TaskCreationOptions.RunContinuationsAsynchronously); public LongAliveHttpContent()
{
Headers.ContentType = new MediaTypeHeaderValue("application/grpc");
} protected override Task SerializeToStreamAsync(Stream stream, TransportContext? context)
{
_streamGetCompletionSource.SetResult(stream);
return _taskCompletionSource.Task;
} protected override bool TryComputeLength(out long length)
{
length = -1;
return false;
} public void Complete()
{
_taskCompletionSource.TrySetResult();
} public Task<Stream> GetStreamAsync()
{
return _streamGetCompletionSource.Task;
}
}
  • 客户端同样需要满足对应的请求要求:
 - 请求的协议使用的是 `HTTP/2`;
- 方法都为 `POST`;
- 所有grpc方法都映射到了对应的终结点 `/{package名}.{service名}/{方法名}`;
- 请求&响应的 `ContentType` 都为 `application/grpc`;

直接上代码,使用 HttpClient 发起请求,并获取 请求流 & 响应流

private static (Task<Stream> RequestStreamGetTask, Task<Stream> ResponseStreamGetTask, LongAliveHttpContent HttpContent) CreateStreamGetTasksAsync(HttpClient client, string path)
{
var content = new LongAliveHttpContent(); var httpRequestMessage = new HttpRequestMessage()
{
Method = HttpMethod.Post,
RequestUri = new Uri(path, UriKind.Relative),
Content = content,
Version = HttpVersion.Version20,
VersionPolicy = HttpVersionPolicy.RequestVersionExact,
}; var responseStreamGetTask = client.SendAsync(httpRequestMessage, HttpCompletionOption.ResponseHeadersRead)
.ContinueWith(m => m.Result.Content.ReadAsStreamAsync())
.Unwrap(); return (content.GetStreamAsync(), responseStreamGetTask, content);
}
  • 实现和Grpc客户端相同的执行逻辑。代码如下:
private static async Task BidirectionalWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/Bidirectional"); var requestStream = await requestStreamGetTask; var sendTask = Task.Run(async () =>
{
for (int i = 0; i < 10; i++)
{
await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage($"{nameof(Bidirectional)}-{i}"));
} httpContent.Complete();
}); var receiveTask = DisplayReceivedMessageAsync(responseStreamGetTask); await Task.WhenAll(sendTask, receiveTask);
} private static async Task ClientSideWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/ClientSide"); var requestStream = await requestStreamGetTask; for (int i = 0; i < 5; i++)
{
await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage($"{nameof(ClientSide)}-{i}")); await requestStream.FlushAsync();
} httpContent.Complete(); await DisplayReceivedMessageAsync(responseStreamGetTask);
} private static async Task SampleWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/Simple"); var requestStream = await requestStreamGetTask; await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage(nameof(Sample))); httpContent.Complete(); await DisplayReceivedMessageAsync(responseStreamGetTask);
} private static async Task ServerSideWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/ServerSide"); var requestStream = await requestStreamGetTask; await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage(nameof(ServerSide))); httpContent.Complete(); await DisplayReceivedMessageAsync(responseStreamGetTask);
}

此时分别进行如下测试:

  • 使用 GrpcService 运行服务端,并分别使用sdk客户端HttpClient客户端进行请求;
  • 使用 Controller 运行服务端,并分别使用sdk客户端HttpClient客户端进行请求;

可以看到客户端运行结果相同,如下:

Sample Received: elpmaS
ClientSide Received: ServerSide Received Over. Total: 5
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
Bidirectional Received: 0-lanoitceridiB
Bidirectional Received: 1-lanoitceridiB
Bidirectional Received: 2-lanoitceridiB
Bidirectional Received: 3-lanoitceridiB
Bidirectional Received: 4-lanoitceridiB
Bidirectional Received: 5-lanoitceridiB
Bidirectional Received: 6-lanoitceridiB
Bidirectional Received: 7-lanoitceridiB
Bidirectional Received: 8-lanoitceridiB
Bidirectional Received: 9-lanoitceridiB
----------------- WithOutSDK -----------------
SampleWithOutSDK Received: elpmaS
ClientSideWithOutSDK Received: ServerSide Received Over. Total: 5
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
BidirectionalWithOutSDK Received: 0-lanoitceridiB
BidirectionalWithOutSDK Received: 1-lanoitceridiB
BidirectionalWithOutSDK Received: 2-lanoitceridiB
BidirectionalWithOutSDK Received: 3-lanoitceridiB
BidirectionalWithOutSDK Received: 4-lanoitceridiB
BidirectionalWithOutSDK Received: 5-lanoitceridiB
BidirectionalWithOutSDK Received: 6-lanoitceridiB
BidirectionalWithOutSDK Received: 7-lanoitceridiB
BidirectionalWithOutSDK Received: 8-lanoitceridiB
BidirectionalWithOutSDK Received: 9-lanoitceridiB

六、结论

至此,我们稍作分析和总结,可以得出结论:

  • Grpc 所有类型的方法调用都是普通的Http请求,只是请求和响应的内容是经过 Protobuf 编码的数据;

我们再稍作拓展,可以得出更多结论:

  • 多路复用Header压缩 什么的,都是 Http2 带来的优化,不是和 Grpc 绑定的,使用 Http2 访问常规 WebAPI 也能享受到其带来的好处;
  • GrpcUnary 请求模式和和 WebAPI 逻辑是一样的;Server streamingClient streaming 请求模式都可以通过 Http1.1 进行实现(但不能多路复用,每个请求会独占一个连接);Bidirectional streaming 是基于 二进制分帧 的,只能在 Http2 及以上版本实现双向流通讯;

基于以上结论,我们总结一下 GrpcWebAPI 的优势在哪里:

  • 运行速度更快(一定情况下),Protobuf 基于二进制的编码,在数据量较多时,比 json 这种基于文本的编码效率更高;但丢失了直接的可阅读性;(没做性能测试,理论是这样,如果性能打不过 json 的话,那就没有存在价值了。理论上数据量越大,性能差距越大)
  • 传输数据更少,json 因为要自我描述,所有字段都有名字,在序列化 List 时这种浪费就比较多了,重复对象越多,浪费越多(但可阅读性也是这样来的);Protobuf 没有这方面的浪费,还有一些其它的优化,参见 protocol-buffers-encoding
  • 开发速度更快,SDK使用 proto 文件直接生成服务端和客户端,上手更快,跨语言也能快速生成客户端(这点其实见仁见智,WebAPI 也有类似的工具);

Grpc 比传统 WebAPI 的劣势有哪些呢:

  • 可阅读性;不借助工具 Grpc 的消息内容是没法直接阅读的;
  • HTTP2 强绑定;WebAPI 可以在低版本协议下运行,某些时候会方便一点;
  • 依赖 Grpc SDK;虽然 Grpc SDK 已经覆盖了很多主流语言,但如果恰好某个需求要使用的语言没有SDK,那就有点麻烦了;相比之下基于文本的 WebAPI 会更通用一点;
  • 类型不能完全覆盖某些语言的基础类型,需要额外的编码量(方法不能直接接收/返回基础类型、Nullable等);
  • Protobuf 要求严格的格式,字段增删
  • 额外的学习成本;

最后再基于结论,总结一些我认为有问题的 grpc 使用方法吧:

  • grpc 当作一个封包/拆包工具;在消息体中放一个 json 之类的东西,拿到消息之后在反序列化一次。。。这又是何必呢。。。直接基于原生 Http 写一个 基于消息头指定消息长度 的分包逻辑并花不了多少工作量,也不会额外引入grpc的相关东西;这个用法也和 grpc高性能 背道而驰,还多了一层 序列化/反序列化 操作;(我在这里没有说nacos)
  • 使用单独的认证逻辑;grpc 调用就是 Http 请求,那么 Header 的工作逻辑是和 WebAPI 完全一样的;那么 grpc 请求完全可以使用现有的 Http 认证 和 Header处理 代码甚至请求管道;额外再自定义消息实现相关功能不是多此一举吗?(我在这里也没有说nacos)

综上,个人认为,不是别人说 grpc 高性能,就认为它碾压传统 WebAPI,就去用它;还是需要了解原理后好好考虑的,确认它能否为你带来理想的效果;有时候或许自己手写一个变体的 Http 请求处理逻辑能更快更好的满足需求;


拓展

如果有闲心的话,理论上甚至可以做下列的玩具:

  • WebAPIgrpc 兼容层,使 Controller 既能以 grpc 工作又能处理普通请求;通过 Controller 定义,反向生成 DTOproto 消息定义,以及整个service的 proto 定义;
  • grpcWebAPI 兼容层,使 grpc 服务能工作的像 Controller 一样,对外输入输出 json

[gRPC via C#] gRPC本质的探究与实践的更多相关文章

  1. protobuffer、gRPC、restful gRPC的相互转化

    转自:https://studygolang.com/articles/12510 文档 grpc中文文档 grpc-gateway,restful和grpc转换库 protobuf 官网 proto ...

  2. 我的Go gRPC之旅、01 初识gRPC,感受gRPC的强大魅力

    微服务架构 微服务是一种开发软件的架构和组织方法,其中软件由通过明确定义的API 进行通信的小型独立服务组成. 这些服务由各个小型独立团队负责. 微服务架构使应用程序更易于扩展和更快地开发,从而加速创 ...

  3. attilax.java 注解的本质and 使用最佳实践(3)O7

    attilax.java 注解的本质and 使用最佳实践(3)O7 1. 定义pojo 1 2. 建立注解By eclipse tps 1 3. 注解参数的可支持数据类型: 2 4. 注解处理器 2 ...

  4. Golang gRPC学习(03): grpc官方示例程序route_guide简析

    代码主要来源于grpc的官方examples代码: route_guide https://github.com/grpc/grpc-go/tree/master/examples/route_gui ...

  5. 前端框架本质之探究——以Vue.js为例

    问:我们在使用Vue时,实际上干了什么?   答:实际上只干了一件事——new了一个Vue对象.后面的事,都交由这个对象自动去做.就好像按了下开关,机器跑起来了,剩下的事就不用我们再操心了.   各位 ...

  6. Spring:IOC本质分析探究

    IOC本质分析 分析实现 我们先用我们原来的方式写一段代码 . 先写一个UserDao接口 public interface UserDao { public void getUser(); } 再去 ...

  7. cocos2d-x触摸事件优先级的探究与实践

    如何让自定义Layer触发触摸事件? bool LayerXXX::init() { this->setTouchEnabled(true); CCTouchDispatcher* td = C ...

  8. java grpc实例分析

    一.Protocol Buffer 我们还是先给出一个在实际开发中经常会遇到的系统场景.比如:我们的客户端程序是使用Java开发的,可能运行自不同的平台,如:Linux.Windows或者是Andro ...

  9. 跟我一起学Go系列:gRPC 入门必备

    RPC 的定义这里就不再说,看文章的同学都是成熟的开发.gRPC 是 Google 开源的高性能跨语言的 RPC 方案,该框架的作者 Louis Ryan 阐述了设计这款框架的动机,有兴趣的同学可以看 ...

随机推荐

  1. elasticsearch源码分析及插件开发

    ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apach ...

  2. C# 在PDF文档中应用多种不同字体

    在PDF文档中,可绘制不同字体样式.不同语言的文字,可通过使用Standard字体.TrueType字体.CJK字体或者自定义(私有)等字体类型.下面通过C#程序代码来展示如何实现使用以上类型的字体来 ...

  3. Mysql 死锁分析

    1. 结论 死锁检查机制 当事务A需要获取一个行锁时(例如更新一行数据),假如需要获取行1的锁 检查其他事务有没有已获取了行1的锁. 如果有,例如事务B已获取了行1的锁. 继续检查事务B在等待的锁,如 ...

  4. limit概述

    5.limit 5.1.limit是将查询结果集的一部分取出来,通常使用在分页查询中 分页作用是为了提高用户体验,可以一页一页翻页看 5.2.limit用法:(非常重要) 完整用法:limit sta ...

  5. Rsync安装配置

    一.先准备两台CentOS服务器,假定是 1.172.18.2.225(服务端) 需要配置rsyncd.conf文件 2.172.18.2.227(客户端) 不需要配置rsyncd.conf文件 二. ...

  6. 【webpack4.0】---webpack的基本使用(二)

    一.什么是plugins plugins可以使webpack在运行到某个时刻的时候,帮你做一些事情,类似于生命周期一样 plugins,它就是一个扩展器,它丰富了wepack本身,针对是loader结 ...

  7. %r和%s的区别

    理解%r和%s的区别 %r会重现所表达的对象,%s会将所有转成字符串 eg1: print('i am %s years old' % 22) print('i am %r years old' % ...

  8. CodeForces 摆烂寄录

    按订正顺序排序 现在是乱排的了 完整代码占版面 所以只放 AC 记录链接 Good Bye 2021: 2022 is NEAR 这场打得真拉/tuu A. 简单签到 开场就读错题,浪费 5min / ...

  9. Ansible之roles模块--lnmp分布式部署

    Ansible之roles模块--lnmp分布式部署 目录 Ansible之roles模块--lnmp分布式部署 1. role模块的作用 2. roles的目录结构 3. roles内个目录含义解释 ...

  10. 协程 & IO模型 & HTTP协议

    今日内容 进程池与线程池的基本使用 协程理论与实操 IO模型 前端简介 内容详细 一.进程池与线程池的基本使用 1.进程池与线程池的作用 为了保证计算机硬件安全的前提下,提升程序的运行效率 2.回调机 ...