[gRPC via C#] gRPC本质的探究与实践
鉴于内容过多,先上太长不看版:
grpc
就是请求流
&响应流
特殊一点的Http
请求,性能和WebAPI
比起来只快在Protobuf
上;
附上完整试验代码:GrpcWithOutSDK.zip
另附小Demo,基于 Controller
和 HttpClient
的在线聊天室:ChatRoomOnController.zip
本文内容有点长,涉及较多基础知识点,某些结论可能直接得出,没有上下文,限于篇幅,不会在本文内详细描述,如有疑惑请友好交流或尝试搜索互联网。
本文仅代表个人试验结果和观点,可能会有偏颇,请自行判断。
一、背景
个人经常在网上看到 grpc
、高性能
字眼的文章;有幸也面试过一些同僚,问及 grpc
对比 WebAPI
,答案都是更快、性能更高;至于能快多少,答案就各种各样了,几倍到几十倍的回答都有,但大概是统一的:“grpc
要快得多”。那么具体快在哪里呢?回答我就觉得不那么准确了。
现在我们就来探索一下 grpc
和 WebAPI
的差别是什么? grpc
快在哪里?
二、验证请求模型
就是个常规的 asp.net core 使用 grpc 的步骤
创建服务端
- 建立一个
asp.net core grpc
项目
- 添加一个测试的
reverse.proto
用于测试grpc
的几种通讯模式,并为其生成服务端
syntax = "proto3";
option csharp_namespace = "GrpcWithOutSDK";
package reverse;
service Reverse {
rpc Simple (Request) returns (Reply);
rpc ClientSide (stream Request) returns (Reply);
rpc ServerSide (Request) returns (stream Reply);
rpc Bidirectional (stream Request) returns (stream Reply);
}
message Request {
string message = 1;
}
message Reply {
string message = 1;
}
- 新建
ReverseService.cs
实现具体的方法逻辑
public class ReverseService : Reverse.ReverseBase
{
private readonly ILogger<ReverseService> _logger;
public ReverseService(ILogger<ReverseService> logger)
{
_logger = logger;
}
private static Reply CreateReplay(Request request)
{
return new Reply
{
Message = new string(request.Message.Reverse().ToArray())
};
}
private void DisplayReceivedMessage(Request request, [CallerMemberName] string? methodName = null)
{
_logger.LogInformation($"{methodName} Received: {request.Message}");
}
public override async Task Bidirectional(IAsyncStreamReader<Request> requestStream, IServerStreamWriter<Reply> responseStream, ServerCallContext context)
{
while (await requestStream.MoveNext())
{
DisplayReceivedMessage(requestStream.Current);
await responseStream.WriteAsync(CreateReplay(requestStream.Current));
}
}
public override async Task<Reply> ClientSide(IAsyncStreamReader<Request> requestStream, ServerCallContext context)
{
var total = 0;
while (await requestStream.MoveNext())
{
total++;
DisplayReceivedMessage(requestStream.Current);
}
return new Reply
{
Message = $"{nameof(ServerSide)} Received Over. Total: {total}"
};
}
public override async Task ServerSide(Request request, IServerStreamWriter<Reply> responseStream, ServerCallContext context)
{
DisplayReceivedMessage(request);
for (int i = 0; i < 5; i++)
{
await responseStream.WriteAsync(CreateReplay(request));
}
}
public override Task<Reply> Simple(Request request, ServerCallContext context)
{
return Task.FromResult(CreateReplay(request));
}
}
最后记得 app.MapGrpcService<ReverseService>();
创建客户端
- 新建一个控制台项目,并添加
Google.Protobuf
、Grpc.Net.Client
、Grpc.Tools
这几个包的引用 - 引用之前写好的
reverse.proto
并为其生成客户端 - 写几个用于测试各种通讯模式的方法
private static async Task Bidirectional(Reverse.ReverseClient client)
{
var stream = client.Bidirectional();
var sendTask = Task.Run(async () =>
{
for (int i = 0; i < 10; i++)
{
await stream.RequestStream.WriteAsync(new() { Message = $"{nameof(Bidirectional)}-{i}" });
}
await stream.RequestStream.CompleteAsync();
});
var receiveTask = Task.Run(async () =>
{
while (await stream.ResponseStream.MoveNext(default))
{
DisplayReceivedMessage(stream.ResponseStream.Current);
}
});
await Task.WhenAll(sendTask, receiveTask);
}
private static async Task ClientSide(Reverse.ReverseClient client)
{
var stream = client.ClientSide();
for (int i = 0; i < 5; i++)
{
await stream.RequestStream.WriteAsync(new() { Message = $"{nameof(ClientSide)}-{i}" });
}
await stream.RequestStream.CompleteAsync();
var reply = await stream.ResponseAsync;
DisplayReceivedMessage(reply);
}
private static async Task Sample(Reverse.ReverseClient client)
{
var reply = await client.SimpleAsync(new() { Message = nameof(Sample) });
DisplayReceivedMessage(reply);
}
private static async Task ServerSide(Reverse.ReverseClient client)
{
var stream = client.ServerSide(new() { Message = nameof(ServerSide) });
while (await stream.ResponseStream.MoveNext(default))
{
DisplayReceivedMessage(stream.ResponseStream.Current);
}
}
- 测试代码
const string Host = "http://localhost:5035";
var channel = GrpcChannel.ForAddress(Host);
var grpcClient = new Reverse.ReverseClient(channel);
await Sample(grpcClient);
await ClientSide(grpcClient);
await ServerSide(grpcClient);
await Bidirectional(grpcClient);
进行验证
- 将服务端的
Microsoft.AspNetCore
日志等级调整为Information
以打印请求日志 - 运行服务端与客户端
- 不出意外的话服务端会看到如下输出(为便于观察,已按方法进行分段,不重要的信息已省略)
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/Simple application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/Simple'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/Simple'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/Simple application/grpc - - 200 - application/grpc 99.1956ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/ClientSide application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/ClientSide'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/ClientSide'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/ClientSide application/grpc - - 200 - application/grpc 21.9445ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/ServerSide application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/ServerSide'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/ServerSide'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/ServerSide application/grpc - - 200 - application/grpc 12.7054ms
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
Request starting HTTP/2 POST http://localhost:5035/reverse.Reverse/Bidirectional application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
Executing endpoint 'gRPC - /reverse.Reverse/Bidirectional'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
Executed endpoint 'gRPC - /reverse.Reverse/Bidirectional'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
Request finished HTTP/2 POST http://localhost:5035/reverse.Reverse/Bidirectional application/grpc - - 200 - application/grpc 41.2414ms
对日志进行一些分析我们可以发现:
- 所有类型的
grpc
通讯模式执行逻辑都是相同的,都是一次完整的http请求周期; - 请求的协议使用的是
HTTP/2
; - 方法都为
POST
; - 所有grpc方法都映射到了对应的终结点
/{package名}.{service名}/{方法名}
; - 请求&响应的
ContentType
都为application/grpc
;
三、进一步验证请求模型
如果我们上一步的分析是对的,那么数据只能承载在 请求流
& 响应流
中,我们可以尝试获取流中的数据,进一步分析具体细节;
dump请求&响应数据
借助 asp.net core
的中间件,我们可以比较容易的进行 请求流
& 响应流
的内容 dump
;
请求流
是只读的,响应流
是只写的,我们需要两个代理流
替换原有的流,进行数据dump
,将数据保存到 MemoryStream
中,以便我们观察;
这两个流分别为 ReadCacheProxyStream.cs
和 WriteCacheProxyStream.cs
,直接上代码:
public class ReadCacheProxyStream : Stream
{
private readonly Stream _innerStream;
public MemoryStream CachedStream { get; } = new MemoryStream(1024);
public override bool CanRead => _innerStream.CanRead;
public override bool CanSeek => false;
public override bool CanWrite => false;
public override long Length => _innerStream.Length;
public override long Position { get => _innerStream.Length; set => throw new NotSupportedException(); }
public ReadCacheProxyStream(Stream innerStream)
{
_innerStream = innerStream;
}
public override void Flush() => throw new NotSupportedException();
public override Task FlushAsync(CancellationToken cancellationToken) => _innerStream.FlushAsync(cancellationToken);
public override int Read(byte[] buffer, int offset, int count) => throw new NotSupportedException();
public override async ValueTask<int> ReadAsync(Memory<byte> buffer, CancellationToken cancellationToken = default)
{
var len = await _innerStream.ReadAsync(buffer, cancellationToken);
if (len > 0)
{
CachedStream.Write(buffer.Span.Slice(0, len));
}
return len;
}
public override long Seek(long offset, SeekOrigin origin) => throw new NotSupportedException();
public override void SetLength(long value) => throw new NotSupportedException();
public override void Write(byte[] buffer, int offset, int count) => throw new NotSupportedException();
}
public class WriteCacheProxyStream : Stream
{
private readonly Stream _innerStream;
public MemoryStream CachedStream { get; } = new MemoryStream(1024);
public override bool CanRead => false;
public override bool CanSeek => false;
public override bool CanWrite => _innerStream.CanWrite;
public override long Length => _innerStream.Length;
public override long Position { get => _innerStream.Length; set => throw new NotSupportedException(); }
public WriteCacheProxyStream(Stream innerStream)
{
_innerStream = innerStream;
}
public override void Flush() => throw new NotSupportedException();
public override Task FlushAsync(CancellationToken cancellationToken) => _innerStream.FlushAsync(cancellationToken);
public override int Read(byte[] buffer, int offset, int count) => throw new NotSupportedException();
public override long Seek(long offset, SeekOrigin origin) => throw new NotSupportedException();
public override void SetLength(long value) => throw new NotSupportedException();
public override void Write(byte[] buffer, int offset, int count) => throw new NotSupportedException();
public override async ValueTask WriteAsync(ReadOnlyMemory<byte> buffer, CancellationToken cancellationToken = default)
{
await _innerStream.WriteAsync(buffer, cancellationToken);
CachedStream.Write(buffer.Span);
}
}
- 在请求管道中替换流
将如下中间件添加到请求管道的最开始
app.Use(async (context, next) =>
{
var originRequestBody = context.Request.Body;
var originResponseBody = context.Response.Body;
var requestCacheStream = new ReadCacheProxyStream(originRequestBody);
var responseCacheStream = new WriteCacheProxyStream(originResponseBody);
context.Request.Body = requestCacheStream;
context.Response.Body = responseCacheStream;
try
{
await next();
}
finally
{
await context.Response.CompleteAsync();
//要不要还回去不在这里进行讨论了
context.Request.Body = originRequestBody;
context.Response.Body = originResponseBody;
var requestData = requestCacheStream.CachedStream.ToArray();
var responseData = requestCacheStream.CachedStream.ToArray();
}
});
- 接下来在
finally
块的最后打上断点,然后运行服务端和客户端,即可在中间件中通过requestData
和responseData
观察数据交互
分析数据结构
理论上我们可以直接使用 Protobuf
进行解析,不过这里我们目的是为了手动实现一个超级简单的编码器。。。
客户端执行 Sample
方法,并在服务端获取 requestData
和 responseData
:
分析requestData
这个样子太不直观了,由于我们的消息定义 Request
只有一个 string
类型的字段,那么如果之前猜测正确,这个数据里面必定有对应字符串。我们直接尝试拿来看看:
果然有对应的数据 Sample
,我们尝试去掉多余的数据看看:
那么前7个byte是干什么的呢,我们改一下请求的消息内容,将 Sample
修改为 Sample1
再次进行分析:
这样就比较明显了,稍做分析,我们可以先做个简单的总结,第5
个字节为消息的总长度
,第6
个字节应该是字段描述之类的,当前消息体固定为10
,第7
个字节为Request.message字段的长度
;
不过这样有点草率,byte
最大为255
,我们再探索一下内容超过255时,是什么结构。将 Sample
修改为 50 个重复的 Sample
再次进行分析:
情况一下就复杂了。。。不过第6
个字节仍然是10
,那么前5
个字节应该有描述消息总长度,[0,0,0,1,47] 和长度 303
(注:308-5)之间的关系是什么呢;稍微试了一下,数据的第1
个字节目前假设固定为0
,第2-5字节应该是一个大端序
的uint32
,用来声明消息总长度但是第7
、8
个字节如何转换为300
,就有点难琢磨了。。。算了,我们先不处理内容过大的情况吧(具体编码逻辑可参见 protocol-buffers-encoding)
分析responseData
查看后发现结构和 requestData
是一样的(因为 Request
和 Reply
消息声明的结构相同),这里就不多描述了,可以自行Debug查看。
分析流式请求的requestData
和responseData
分析后发现流式请求里面的多个消息每个都是单个消息的结构,然后顺序放到请求或响应流中,这里也不多描述了,可以自行Debug进行查看,直接上基于以上总结的解码器代码:
public static IEnumerable<string> ReadMessages(byte[] originData)
{
var slice = originData.AsMemory();
while (!slice.IsEmpty)
{
var messageLen = BinaryPrimitives.ReadInt32BigEndian(slice.Slice(1, 4).Span);
var messageData = slice.Slice(5, messageLen);
slice = slice.Slice(5 + messageLen);
int len = messageData.Span[1];
var content = Encoding.UTF8.GetString(messageData.Slice(2, len).Span);
yield return content;
}
}
然后在中间件中展示内容
TempMessageCodecUtil.DisplayMessages(requestData);
TempMessageCodecUtil.DisplayMessages(responseData);
再次运行程序,能够正确看到控制台直接输出的请求和响应消息内容,形如:
四、使用 Controller
实现能够与 Grpc Client SDK
交互的服务端
基于之前的分析,理论上我们只需要满足:
- 请求的协议使用的是 `HTTP/2`;
- 方法都为 `POST`;
- 所有grpc方法都映射到了对应的终结点 `/{package名}.{service名}/{方法名}`;
- 请求&响应的 `ContentType` 都为 `application/grpc`;
然后正确的从请求流中解析数据结构,将正确的数据结构写入响应流,就可以响应 Grpc Client
的请求了。
- 现在我们需要一个编码器,能够将字符串编码为
Reply
消息格式;以及一个解码器,从请求流中读取Request
消息。直接上代码。编码器:
public static byte[] BuildMessage(string message)
{
var contentData = Encoding.UTF8.GetBytes(message);
if (contentData.Length > 127)
{
throw new ArgumentException();
}
var messageData = new byte[contentData.Length + 7];
Array.Copy(contentData, 0, messageData, 7, contentData.Length);
messageData[5] = 10;
messageData[6] = (byte)contentData.Length;
BinaryPrimitives.WriteInt32BigEndian(messageData.AsSpan().Slice(1), contentData.Length + 2);
return messageData;
}
解码器:
private async IAsyncEnumerable<string> ReadMessageAsync([EnumeratorCancellation] CancellationToken cancellationToken)
{
var pipeReader = Request.BodyReader;
while (!cancellationToken.IsCancellationRequested)
{
var readResult = await pipeReader.ReadAsync(cancellationToken);
var buffer = readResult.Buffer;
if (readResult.IsCompleted
&& buffer.IsEmpty)
{
yield break;
}
if (buffer.Length < 5)
{
pipeReader.AdvanceTo(buffer.Start, buffer.End);
continue;
}
var messageBuffer = buffer.IsSingleSegment
? buffer.First
: buffer.ToArray();
var messageLen = BinaryPrimitives.ReadInt32BigEndian(messageBuffer.Slice(1, 4).Span);
if (buffer.Length < messageLen + 5)
{
pipeReader.AdvanceTo(buffer.Start, buffer.End);
continue;
}
messageBuffer = messageBuffer.Slice(5);
int len = messageBuffer.Span[1];
var content = Encoding.UTF8.GetString(messageBuffer.Slice(2, len).Span);
yield return content;
pipeReader.AdvanceTo(readResult.Buffer.GetPosition(7 + len));
}
}
- 实现一个
ReverseController.cs
,映射reverse.proto
中对应的方法,实现和ReverseService.cs
中相同的执行逻辑。代码如下:
[Route("reverse.Reverse")]
[ApiController]
public class ReverseController : ControllerBase
{
[HttpPost]
[Route(nameof(Bidirectional))]
public async Task Bidirectional()
{
await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
DisplayReceivedMessage(item);
await ReplayReverseAsync(item);
}
}
[HttpPost]
[Route(nameof(ClientSide))]
public async Task ClientSide()
{
var total = 0;
await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
total++;
DisplayReceivedMessage(item);
}
await ReplayAsync($"{nameof(ServerSide)} Received Over. Total: {total}");
}
[HttpPost]
[Route(nameof(ServerSide))]
public async Task ServerSide()
{
string message = null!;
await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
message = item;
}
DisplayReceivedMessage(message);
for (int i = 0; i < 5; i++)
{
await ReplayReverseAsync(message);
}
}
[HttpPost]
[Route(nameof(Simple))]
public async Task Simple()
{
string message = null!;
await foreach (var item in ReadMessageAsync(HttpContext.RequestAborted))
{
message = item;
}
DisplayReceivedMessage(message);
await ReplayReverseAsync(message);
}
private async Task ReplayAsync(string message)
{
if (!Response.HasStarted)
{
Response.Headers.ContentType = "application/grpc";
Response.AppendTrailer("grpc-status", "0");
await Response.StartAsync();
}
await Response.Body.WriteAsync(TempMessageCodecUtil.BuildMessage(message));
}
private Task ReplayReverseAsync(string rawMessage) => ReplayAsync(new string(rawMessage.Reverse().ToArray()));
//省略其他信息
}
最后记得 services.AddControllers()
和 app.MapControllers()
并取消Grpc的ServiceMap;
此时分别使用 Controller
和 GrpcService
运行服务端,并查看客户端日志,可以看到运行结果相同,如图:
五、使用 HttpClient
实现能够与 Grpc Server
交互的客户端
在上面我们已经使用原生 Controller
实现了一个可以让客户端正常运行的服务端,现在我们不使用 Grpc SDK
来实现一个可以和服务端交互的客户端。
- 服务端获取请求流和响应流比较简单,目前
HttpClient
没有直接获取请求流的办法,我们需要从HttpContent
的SerializeToStreamAsync
方法中获取到真正的请求流。具体细节不在这里赘述,直接上代码:
class LongAliveHttpContent : HttpContent
{
private readonly TaskCompletionSource<Stream> _streamGetCompletionSource = new(TaskCreationOptions.RunContinuationsAsynchronously);
private readonly TaskCompletionSource _taskCompletionSource = new(TaskCreationOptions.RunContinuationsAsynchronously);
public LongAliveHttpContent()
{
Headers.ContentType = new MediaTypeHeaderValue("application/grpc");
}
protected override Task SerializeToStreamAsync(Stream stream, TransportContext? context)
{
_streamGetCompletionSource.SetResult(stream);
return _taskCompletionSource.Task;
}
protected override bool TryComputeLength(out long length)
{
length = -1;
return false;
}
public void Complete()
{
_taskCompletionSource.TrySetResult();
}
public Task<Stream> GetStreamAsync()
{
return _streamGetCompletionSource.Task;
}
}
- 客户端同样需要满足对应的请求要求:
- 请求的协议使用的是 `HTTP/2`;
- 方法都为 `POST`;
- 所有grpc方法都映射到了对应的终结点 `/{package名}.{service名}/{方法名}`;
- 请求&响应的 `ContentType` 都为 `application/grpc`;
直接上代码,使用 HttpClient
发起请求,并获取 请求流
& 响应流
:
private static (Task<Stream> RequestStreamGetTask, Task<Stream> ResponseStreamGetTask, LongAliveHttpContent HttpContent) CreateStreamGetTasksAsync(HttpClient client, string path)
{
var content = new LongAliveHttpContent();
var httpRequestMessage = new HttpRequestMessage()
{
Method = HttpMethod.Post,
RequestUri = new Uri(path, UriKind.Relative),
Content = content,
Version = HttpVersion.Version20,
VersionPolicy = HttpVersionPolicy.RequestVersionExact,
};
var responseStreamGetTask = client.SendAsync(httpRequestMessage, HttpCompletionOption.ResponseHeadersRead)
.ContinueWith(m => m.Result.Content.ReadAsStreamAsync())
.Unwrap();
return (content.GetStreamAsync(), responseStreamGetTask, content);
}
- 实现和
Grpc
客户端相同的执行逻辑。代码如下:
private static async Task BidirectionalWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/Bidirectional");
var requestStream = await requestStreamGetTask;
var sendTask = Task.Run(async () =>
{
for (int i = 0; i < 10; i++)
{
await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage($"{nameof(Bidirectional)}-{i}"));
}
httpContent.Complete();
});
var receiveTask = DisplayReceivedMessageAsync(responseStreamGetTask);
await Task.WhenAll(sendTask, receiveTask);
}
private static async Task ClientSideWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/ClientSide");
var requestStream = await requestStreamGetTask;
for (int i = 0; i < 5; i++)
{
await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage($"{nameof(ClientSide)}-{i}"));
await requestStream.FlushAsync();
}
httpContent.Complete();
await DisplayReceivedMessageAsync(responseStreamGetTask);
}
private static async Task SampleWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/Simple");
var requestStream = await requestStreamGetTask;
await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage(nameof(Sample)));
httpContent.Complete();
await DisplayReceivedMessageAsync(responseStreamGetTask);
}
private static async Task ServerSideWithOutSDK(HttpClient client)
{
var (requestStreamGetTask, responseStreamGetTask, httpContent) = CreateStreamGetTasksAsync(client, "reverse.Reverse/ServerSide");
var requestStream = await requestStreamGetTask;
await requestStream.WriteAsync(TempMessageCodecUtil.BuildMessage(nameof(ServerSide)));
httpContent.Complete();
await DisplayReceivedMessageAsync(responseStreamGetTask);
}
此时分别进行如下测试:
- 使用
GrpcService
运行服务端,并分别使用sdk客户端
和HttpClient客户端
进行请求; - 使用
Controller
运行服务端,并分别使用sdk客户端
和HttpClient客户端
进行请求;
可以看到客户端运行结果相同,如下:
Sample Received: elpmaS
ClientSide Received: ServerSide Received Over. Total: 5
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
ServerSide Received: ediSrevreS
Bidirectional Received: 0-lanoitceridiB
Bidirectional Received: 1-lanoitceridiB
Bidirectional Received: 2-lanoitceridiB
Bidirectional Received: 3-lanoitceridiB
Bidirectional Received: 4-lanoitceridiB
Bidirectional Received: 5-lanoitceridiB
Bidirectional Received: 6-lanoitceridiB
Bidirectional Received: 7-lanoitceridiB
Bidirectional Received: 8-lanoitceridiB
Bidirectional Received: 9-lanoitceridiB
----------------- WithOutSDK -----------------
SampleWithOutSDK Received: elpmaS
ClientSideWithOutSDK Received: ServerSide Received Over. Total: 5
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
ServerSideWithOutSDK Received: ediSrevreS
BidirectionalWithOutSDK Received: 0-lanoitceridiB
BidirectionalWithOutSDK Received: 1-lanoitceridiB
BidirectionalWithOutSDK Received: 2-lanoitceridiB
BidirectionalWithOutSDK Received: 3-lanoitceridiB
BidirectionalWithOutSDK Received: 4-lanoitceridiB
BidirectionalWithOutSDK Received: 5-lanoitceridiB
BidirectionalWithOutSDK Received: 6-lanoitceridiB
BidirectionalWithOutSDK Received: 7-lanoitceridiB
BidirectionalWithOutSDK Received: 8-lanoitceridiB
BidirectionalWithOutSDK Received: 9-lanoitceridiB
六、结论
至此,我们稍作分析和总结,可以得出结论:
Grpc
所有类型的方法调用都是普通的Http请求,只是请求和响应的内容是经过Protobuf
编码的数据;
我们再稍作拓展,可以得出更多结论:
多路复用
、Header压缩
什么的,都是Http2
带来的优化,不是和Grpc
绑定的,使用Http2
访问常规WebAPI
也能享受到其带来的好处;Grpc
的Unary
请求模式和和WebAPI
逻辑是一样的;Server streaming
、Client streaming
请求模式都可以通过Http1.1
进行实现(但不能多路复用
,每个请求会独占一个连接);Bidirectional streaming
是基于二进制分帧
的,只能在Http2
及以上版本实现双向流通讯;
基于以上结论,我们总结一下 Grpc
比 WebAPI
的优势在哪里:
- 运行速度更快(一定情况下),
Protobuf
基于二进制的编码,在数据量较多时,比json
这种基于文本的编码效率更高;但丢失了直接的可阅读性
;(没做性能测试,理论是这样,如果性能打不过json
的话,那就没有存在价值了。理论上数据量越大,性能差距越大) - 传输数据更少,
json
因为要自我描述,所有字段都有名字,在序列化List
时这种浪费就比较多了,重复对象越多,浪费越多(但可阅读性也是这样来的);Protobuf
没有这方面的浪费,还有一些其它的优化,参见 protocol-buffers-encoding; - 开发速度更快,SDK使用
proto
文件直接生成服务端和客户端,上手更快,跨语言
也能快速生成客户端(这点其实见仁见智,WebAPI
也有类似的工具);
Grpc
比传统 WebAPI
的劣势有哪些呢:
- 可阅读性;不借助工具
Grpc
的消息内容是没法直接阅读的; HTTP2
强绑定;WebAPI
可以在低版本协议下运行,某些时候会方便一点;- 依赖
Grpc SDK
;虽然Grpc SDK
已经覆盖了很多主流语言,但如果恰好某个需求要使用的语言没有SDK,那就有点麻烦了;相比之下基于文本的WebAPI
会更通用一点; - 类型不能完全覆盖某些语言的基础类型,需要额外的编码量(方法不能直接接收/返回基础类型、Nullable等);
Protobuf
要求严格的格式,字段增删- 额外的学习成本;
最后再基于结论,总结一些我认为有问题的 grpc
使用方法吧:
- 把
grpc
当作一个封包/拆包工具;在消息体中放一个json
之类的东西,拿到消息之后在反序列化一次。。。这又是何必呢。。。直接基于原生Http
写一个基于消息头指定消息长度
的分包逻辑并花不了多少工作量,也不会额外引入grpc的相关东西;这个用法也和grpc
的高性能
背道而驰,还多了一层序列化/反序列化
操作;(我在这里没有说nacos) - 使用单独的认证逻辑;
grpc
调用就是Http
请求,那么Header
的工作逻辑是和WebAPI
完全一样的;那么grpc
请求完全可以使用现有的Http
认证 和 Header处理 代码甚至请求管道;额外再自定义消息实现相关功能不是多此一举吗?(我在这里也没有说nacos)
综上,个人认为,不是别人说 grpc
高性能,就认为它碾压传统 WebAPI
,就去用它;还是需要了解原理后好好考虑的,确认它能否为你带来理想的效果;有时候或许自己手写一个变体的 Http 请求处理逻辑能更快更好的满足需求;
拓展
如果有闲心的话,理论上甚至可以做下列的玩具:
WebAPI
的grpc
兼容层,使Controller
既能以grpc
工作又能处理普通请求;通过Controller
定义,反向生成DTO
的proto
消息定义,以及整个service的proto
定义;grpc
的WebAPI
兼容层,使grpc
服务能工作的像Controller
一样,对外输入输出json
;
[gRPC via C#] gRPC本质的探究与实践的更多相关文章
- protobuffer、gRPC、restful gRPC的相互转化
转自:https://studygolang.com/articles/12510 文档 grpc中文文档 grpc-gateway,restful和grpc转换库 protobuf 官网 proto ...
- 我的Go gRPC之旅、01 初识gRPC,感受gRPC的强大魅力
微服务架构 微服务是一种开发软件的架构和组织方法,其中软件由通过明确定义的API 进行通信的小型独立服务组成. 这些服务由各个小型独立团队负责. 微服务架构使应用程序更易于扩展和更快地开发,从而加速创 ...
- attilax.java 注解的本质and 使用最佳实践(3)O7
attilax.java 注解的本质and 使用最佳实践(3)O7 1. 定义pojo 1 2. 建立注解By eclipse tps 1 3. 注解参数的可支持数据类型: 2 4. 注解处理器 2 ...
- Golang gRPC学习(03): grpc官方示例程序route_guide简析
代码主要来源于grpc的官方examples代码: route_guide https://github.com/grpc/grpc-go/tree/master/examples/route_gui ...
- 前端框架本质之探究——以Vue.js为例
问:我们在使用Vue时,实际上干了什么? 答:实际上只干了一件事——new了一个Vue对象.后面的事,都交由这个对象自动去做.就好像按了下开关,机器跑起来了,剩下的事就不用我们再操心了. 各位 ...
- Spring:IOC本质分析探究
IOC本质分析 分析实现 我们先用我们原来的方式写一段代码 . 先写一个UserDao接口 public interface UserDao { public void getUser(); } 再去 ...
- cocos2d-x触摸事件优先级的探究与实践
如何让自定义Layer触发触摸事件? bool LayerXXX::init() { this->setTouchEnabled(true); CCTouchDispatcher* td = C ...
- java grpc实例分析
一.Protocol Buffer 我们还是先给出一个在实际开发中经常会遇到的系统场景.比如:我们的客户端程序是使用Java开发的,可能运行自不同的平台,如:Linux.Windows或者是Andro ...
- 跟我一起学Go系列:gRPC 入门必备
RPC 的定义这里就不再说,看文章的同学都是成熟的开发.gRPC 是 Google 开源的高性能跨语言的 RPC 方案,该框架的作者 Louis Ryan 阐述了设计这款框架的动机,有兴趣的同学可以看 ...
随机推荐
- Cesium中级教程5 - Terrain 地形
Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ CesiumJS支持对与水流相关的海洋.湖泊和河流以及全球高分辨 ...
- 第01讲:Flink 的应用场景和架构模型
你好,欢迎来到第 01 课时,本课时我们主要介绍 Flink 的应用场景和架构模型. 实时计算最好的时代 在过去的十年里,面向数据时代的实时计算技术接踵而至.从我们最初认识的 Storm,再到 Spa ...
- TeXstudio在右边显示预览
打开预览界面后: 点击查看(View) 选择最后一个:窗口/内嵌(Windowed/Embedded) 就可以了
- gin框架的热加载方法
gin是用于实时重新加载Go Web应用程序的简单命令行实用程序.只需gin在您的应用程序目录中运行,您的网络应用程序将 gin作为代理提供.gin检测到更改后,将自动重新编译您的代码.您的应用在下次 ...
- AOP操作-AspectJ注解
AOP操作(AspectJ注解) 1,创建类,在类里面定义方法 2,创建增强类(编写增强逻辑) (1)在增强类里面,创建方法,让不同方法代表不同通知类型 3,进行通知的配置 (1)在spring配置文 ...
- 微信小程序入门教程之二:页面样式
这个系列的上一篇教程,教大家写了一个最简单的 Hello world 微信小程序. 但是,那只是一个裸页面,并不好看.今天接着往下讲,如何为这个页面添加样式,使它看上去更美观,教大家写出实际可以使用的 ...
- linux虚拟机xshell安装
目录 一:虚拟机安装 二:配置windows网络 三:linux操作系统安装 四:xshell安装使用 一:虚拟机安装 1.双击虚拟机软件 ---> 下一步 直至安装完毕 2.安装Linux操作 ...
- 1. flink 基础
flink word count 程序 1. 数据集模式 pom.xml 文件 <?xml version="1.0" encoding="UTF-8" ...
- SpringBoot 简单介绍
一.springboot是啥? 1.什么是springboot? 1.1springboot是spring生态圈的一个轻量级框架,换句话说springboot就是spring,是spring的一个衍生 ...
- JS介绍、意义
HTML和CSS 京东 网页.网站和应用程序 网页:单独的一个页面 网站:一些列相关的页面组成到一起 应用程序:可以和用户产生交互,并实现某种功能. 演示JavaScript的强大 http://im ...