AQS实现原理

AQS中维护了一个volatile int state(共享资源)和一个CLH队列。当state=1时代表当前对象锁已经被占用,其他线程来加锁时则会失败,失败的线程被放入一个FIFO的等待队列中,然后会被UNSAFE.park()操作挂起,等待已经获得锁的线程释放锁才能被唤醒。

我们拿具体场景来分析,假设同时有三个线程并发抢占锁,此时线程一抢占成功,线程二、三抢占失败,具体流程如下:

此时AQS内部数据结构为:

上图可以看到等待队列中的节点Node是一个双向链表,这里SIGNAL是Node中waitStatus属性。

以非公平锁看下具体实现:

java.util.concurrent.locks.ReentrantLock.NonfairSync:

  1. static final class NonfairSync extends Sync {
  2. final void lock() {
  3. if (compareAndSetState(0, 1))
  4. setExclusiveOwnerThread(Thread.currentThread());
  5. else
  6. acquire(1);
  7. }
  8. protected final boolean tryAcquire(int acquires) {
  9. return nonfairTryAcquire(acquires);
  10. }
  11. }

线程进来直接利用CAS尝试抢占锁,如果抢占成功state值会被修改为1,且设置对象独占锁线程为当前线程。

线程抢占实现

线程二抢占失败,执行acquire(1)方法。

java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire()

  1. public final void acquire(int arg) {
  2. if (!tryAcquire(arg) &&
  3. acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
  4. selfInterrupt();
  5. }

tryAcquire是AbstractQueuedSynchronizer的方法,未提供对应实现,由子类实现:

java.util.concurrent.locks.ReentrantLock .nonfairTryAcquire()

  1. final boolean nonfairTryAcquire(int acquires) {
  2. final Thread current = Thread.currentThread();
  3. int c = getState();
  4. if (c == 0) {
  5. if (compareAndSetState(0, acquires)) {
  6. setExclusiveOwnerThread(current);
  7. return true;
  8. }
  9. }
  10. else if (current == getExclusiveOwnerThread()) {
  11. int nextc = c + acquires;
  12. if (nextc < 0)
  13. throw new Error("Maximum lock count exceeded");
  14. setState(nextc);
  15. return true;
  16. }
  17. return false;
  18. }

nonfairTryAcquire()方法中首先会获取state的值,如果不为0则说明当前对象的锁已经被其他线程占有,接着判断占有锁的线程是否为当前线程,如果是则累加state值,这里其实就是可重入锁的具体实现。如果state为0,则执行CAS操作,尝试更新state值为1,如果更新成功则代表当前线程加锁成功。

当前线程二执行tryAcquire()后返回false,接着执行addWaiter(Node.EXCLUSIVE)逻辑,将自己加入到一个FIFO等待队列中,代码实现如下:

java.util.concurrent.locks.AbstractQueuedSynchronizer.addWaiter()

  1. private Node addWaiter(Node mode) {
  2. Node node = new Node(Thread.currentThread(), mode);
  3. Node pred = tail;
  4. if (pred != null) {
  5. node.prev = pred;
  6. if (compareAndSetTail(pred, node)) {
  7. pred.next = node;
  8. return node;
  9. }
  10. }
  11. enq(node);
  12. return node;
  13. }

此时队列中tail指针为空,直接调用enq(node)方法将当前线程加入等待队列尾部:

  1. private Node enq(final Node node) {
  2. for (;;) {
  3. Node t = tail;
  4. if (t == null) {
  5. if (compareAndSetHead(new Node()))
  6. tail = head;
  7. } else {
  8. node.prev = t;
  9. if (compareAndSetTail(t, node)) {
  10. t.next = node;
  11. return t;
  12. }
  13. }
  14. }
  15. }

第一次循环时tail为空,创建一个哨兵节点,head指向这个哨兵节点;第二次循环,将线程二对应的node节点挂载到head节点后面并返回当前线程创建的节点信息。继续往后执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)逻辑,此时传入的参数为线程二对应的node节点信息。

java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued()

  1. final boolean acquireQueued(final Node node, int arg) {
  2. boolean failed = true;
  3. try {
  4. boolean interrupted = false;
  5. for (;;) {
  6. final Node p = node.predecessor();
  7. if (p == head && tryAcquire(arg)) {
  8. setHead(node);
  9. p.next = null; // help GC
  10. failed = false;
  11. return interrupted;
  12. }
  13. if (shouldParkAfterFailedAcquire(p, node) &&
  14. parkAndChecknIterrupt())
  15. interrupted = true;
  16. }
  17. } finally {
  18. if (failed)
  19. cancelAcquire(node);
  20. }
  21. }
  22. private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
  23. int ws = pred.waitStatus;
  24. if (ws == Node.SIGNAL)
  25. return true;
  26. if (ws > 0) {
  27. do {
  28. node.prev = pred = pred.prev;
  29. } while (pred.waitStatus > 0);
  30. pred.next = node;
  31. } else {
  32. compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
  33. }
  34. return false;
  35. }
  36. private final boolean parkAndCheckInterrupt() {
  37. LockSupport.park(this);
  38. return Thread.interrupted();
  39. }

acquireQueued()会先判断当前传入的Node对应的前置节点是否为head,如果是则尝试加锁。加锁成功则将当前节点设置为head节点,然后删除之前的head节点。

如果加锁失败或者Node的前置节点不是head节点,就会通过shouldParkAfterFailedAcquire方法将head节点的waitStatus变成SIGNAL=-1,最后执行parkAndChecknIterrupt方法,调用LockSupport.park()挂起当前线程。此时线程二需要等待其他线程释放锁来唤醒。

线程释放实现

线程一执行完后释放锁,具体代码如下:

java.util.concurrent.locks.AbstractQueuedSynchronizer.release():

  1. public final boolean release(int arg) {
  2. if (tryRelease(arg)) {
  3. Node h = head;
  4. if (h != null && h.waitStatus != 0)
  5. unparkSuccessor(h);
  6. return true;
  7. }
  8. return false;
  9. }

先执行tryRelease方法,如果执行成功,则继续判断head节点的waitStatus是否为0,这个值为SIGNAL=-1不为0,继续执行unparkSuccessor()方法唤醒head的后置节点。

ReentrantLock.tryRelease():

  1. protected final boolean tryRelease(int releases) {
  2. int c = getState() - releases;
  3. if (Thread.currentThread() != getExclusiveOwnerThread())
  4. throw new IllegalMonitorStateException();
  5. boolean free = false;
  6. if (c == 0) {
  7. free = true;
  8. setExclusiveOwnerThread(null);
  9. }
  10. setState(c);
  11. return free;
  12. }

执行完ReentrantLock.tryRelease()后,state被设置为0,Lock对象的独占锁被设置为null。

接着执行java.util.concurrent.locks.AbstractQueuedSynchronizer.unparkSuccessor()方法,唤醒head的后置节点:

  1. private void unparkSuccessor(Node node) {
  2. int ws = node.waitStatus;
  3. if (ws < 0)
  4. compareAndSetWaitStatus(node, ws, 0);
  5. Node s = node.next;
  6. if (s == null || s.waitStatus > 0) {
  7. s = null;
  8. for (Node t = tail; t != null && t != node; t = t.prev)
  9. if (t.waitStatus <= 0)
  10. s = t;
  11. }
  12. if (s != null)
  13. LockSupport.unpark(s.thread);
  14. }

这里主要是将head节点的waitStatus设置为0,然后解除head节点next的指向,使head几点空置,等待被垃圾回收。

此时重新将head指针指向线程二对应的Node节点,且使用LockSupport.unpark方法来唤醒线程二。被唤醒的线程会接着尝试获取锁,用CAS指令修改state数据。执行完成后AQS中的数据结构如下:

AQS实现原理的更多相关文章

  1. 并发编程学习笔记(5)----AbstractQueuedSynchronizer(AQS)原理及使用

    (一)什么是AQS? 阅读java文档可以知道,AbstractQueuedSynchronizer是实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架, ...

  2. AQS工作原理分析

      AQS工作原理分析 一.大致介绍1.前面章节讲解了一下CAS,简单讲就是cmpxchg+lock的原子操作:2.而在谈到并发操作里面,我们不得不谈到AQS,JDK的源码里面好多并发的类都是通过Sy ...

  3. 扒一扒ReentrantLock以及AQS实现原理

    提到JAVA加锁,我们通常会想到synchronized关键字或者是Java Concurrent Util(后面简称JCU)包下面的Lock,今天就来扒一扒Lock是如何实现的,比如我们可以先提出一 ...

  4. ReentrantLock 以及 AQS 实现原理

    什么是可重入锁?       ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待.可重入锁是如何实现的呢?这要从ReentrantLock ...

  5. AQS实现原理分析——ReentrantLock

    在Java并发包java.util.concurrent中可以看到,不少源码是基于AbstractQueuedSynchronizer(以下简写AQS)这个抽象类,因为它是Java并发包的基础工具类, ...

  6. AQS底层原理分析

    J.U.C 简介 Java.util.concurrent 是在并发编程中比较常用的工具类,里面包含很多用来在并发场景中使用的组件.比如线程池.阻塞队列.计时器.同步器.并发集合等等.并发包的作者是大 ...

  7. 多线程(四) AQS底层原理分析

    J.U.C 简介 Java.util.concurrent 是在并发编程中比较常用的工具类,里面包含很多用来在并发 场景中使用的组件.比如线程池.阻塞队列.计时器.同步器.并发集合等等.并 发包的作者 ...

  8. ReentrantLock以及AQS实现原理

    什么是可重入锁? ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待.可重入锁是如何实现的呢?这要从ReentrantLock的一个内部类 ...

  9. AQS的原理及源码分析

    AQS是什么 AQS= volatile修饰的state变量(同步状态) +FIFO队列(CLH改善版的虚拟双向队列,用于阻塞等待唤醒机制) 队列里维护的Node节点主要包含:等待状态waitStat ...

随机推荐

  1. 解析ArrayList的底层实现(上)

    private static final long serialVersionUID = 8683452581122892189L;//唯一序列号ID private static final int ...

  2. Bigdecimal用法

    一.简介 Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算.双精度浮点型变量double可以处理16位有效数.在实际应用中,需要对更大或者更 ...

  3. 消息队列 折腾ActiveMQ时遇到的问题和解决方法

    1.先讲严重的:服务挂掉. 这得从ActiveMQ的储存机制说起.在通常的情况下,非持久化消息是存储在内存中的,持久化消息是存储在文件中的,它们的最大限制在配置文件的<systemUsage&g ...

  4. javascript学习(五)之标准对象

    一.RegExp:正则表达式是一种用来匹配字符串的强有力的武器.它的设计思想是用一种描述性的语言来给字符串定义一个规则, 凡是符合规则的字符串,我们就认为它"匹配"了,否则,该字符 ...

  5. java开源项目学习

    http://jeecg-boot.mydoc.io/ 在线文档已切换至新地址: http://doc.jeecg.com Jeecg-Boot 是一款基于SpringBoot+代码生成器的快速开发平 ...

  6. 记intouch SMC local下驱动丢失问题解决

    最近项目中,维护发现Intouch 2014R2版本下,有一台上位机SMC下local安装的Dassdirect和dasmbtcp驱动都丢失了,无法查看.但不影响程序的正常使用,遂进行相应的寻求帮助, ...

  7. GooseFS助力大数据业务数倍提升计算能力

    前言 GooseFS是由腾讯云推出的一款分布式缓存方案,主要针对包括需要缓存加速的数据湖业务场景,提供基于对象存储COS服务的近计算端数据加速层. GooseFS 基于开源大数据缓存方案 Alluxi ...

  8. 迈入 8K 时代,AI 驱动超高清 “视” 界到来

    2021 年,超高清迈入 "8K" 时代.超高清视频将带来全新视听体验,但超高清生产在内容生产层面也面临着超高清存量少.生产设备更新换代慢.制作周期成倍增加的困境.在 7 月 10 ...

  9. 涨姿势啦!Java程序员装X必备词汇之对象标记Mark Word!

    大家好,我是庆哥Java,一个专注于干货分享的Java自学者! 写在前面 如果你已经知道什么是Mark Word,那我也希望你都好好阅读下本篇文章,因为你有可能发现不一样的切入点来帮助你更加深入的了解 ...

  10. C++ //关系运算符重载 < = > !=

    1 //关系运算符重载 < = > != 2 #include <iostream> 3 #include <string> 4 using namespace s ...