关于

本文演示环境: win10 + VS2017

1. demo

#include <iostream>
#include "sigslot.h" using namespace sigslot; class Switch
{
public:
signal0<> clicked;
}; class Light : public has_slots<>
{
public:
void on()
{
std::cout << "the light is on\n";
}
}; int main(int argc, char *argv[])
{
Light light;
Switch sw;
sw.clicked.connect(&light, &Light::on); sw.clicked.emit(); system("pause"); return 0;
}

2.编译出错

下载原版sigslot.h文件编译出错:

1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): warning C4346: “const_iterator”: 依赖名称不是类型
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): note: 用“typename”为前缀来表示类型
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(476): note: 参见对正在编译的 类 模板 实例化 "sigslot::has_slots<mt_policy>" 的引用
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): error C2061: 语法错误: 标识符“const_iterator”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(419): error C2238: 意外的标记位于“;”之前
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(431): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(462): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(493): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(587): note: 参见对正在编译的 类 模板 实例化 "sigslot::_signal_base0<mt_policy>" 的引用
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(493): error C7510: “const_iterator”: 类型 从属名称的使用必须以“typename”为前缀
1>c:\users\xxxxxx\desktop\demo_sigslot\sigslot.h(513): error C2760: 语法错误: 意外的令牌“标识符”,预期的令牌为“;”
.......

3.正确编译

替换下面的代码 到 sigslog.h中,编译成功,编译及运行结果:

4. sigslot.h

修改后的sigslot.h说明如下:

// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur.

文件源码:

// sigslot.h: Signal/Slot classes
//
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
// the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
// (see also the full documentation at http://sigslot.sourceforge.net/)
//
// #define switches
// SIGSLOT_PURE_ISO - Define this to force ISO C++ compliance. This also disables
// all of the thread safety support on platforms where it is
// available.
//
// SIGSLOT_USE_POSIX_THREADS - Force use of Posix threads when using a C++ compiler other than
// gcc on a platform that supports Posix threads. (When using gcc,
// this is the default - use SIGSLOT_PURE_ISO to disable this if
// necessary)
//
// SIGSLOT_DEFAULT_MT_POLICY - Where thread support is enabled, this defaults to multi_threaded_global.
// Otherwise, the default is single_threaded. #define this yourself to
// override the default. In pure ISO mode, anything other than
// single_threaded will cause a compiler error.
//
// PLATFORM NOTES
//
// Win32 - On Win32, the WIN32 symbol must be #defined. Most mainstream
// compilers do this by default, but you may need to define it
// yourself if your build environment is less standard. This causes
// the Win32 thread support to be compiled in and used automatically.
//
// Unix/Linux/BSD, etc. - If you're using gcc, it is assumed that you have Posix threads
// available, so they are used automatically. You can override this
// (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
// something other than gcc but still want to use Posix threads, you
// need to #define SIGSLOT_USE_POSIX_THREADS.
//
// ISO C++ - If none of the supported platforms are detected, or if
// SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
// along with any code that might cause a pure ISO C++ environment to
// complain. Before you ask, gcc -ansi -pedantic won't compile this
// library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
// errors that aren't really there. If you feel like investigating this,
// please contact the author.
//
//
// THREADING MODES
//
// single_threaded - Your program is assumed to be single threaded from the point of view
// of signal/slot usage (i.e. all objects using signals and slots are
// created and destroyed from a single thread). Behaviour if objects are
// destroyed concurrently is undefined (i.e. you'll get the occasional
// segmentation fault/memory exception).
//
// multi_threaded_global - Your program is assumed to be multi threaded. Objects using signals and
// slots can be safely created and destroyed from any thread, even when
// connections exist. In multi_threaded_global mode, this is achieved by a
// single global mutex (actually a critical section on Windows because they
// are faster). This option uses less OS resources, but results in more
// opportunities for contention, possibly resulting in more context switches
// than are strictly necessary.
//
// multi_threaded_local - Behaviour in this mode is essentially the same as multi_threaded_global,
// except that each signal, and each object that inherits has_slots, all
// have their own mutex/critical section. In practice, this means that
// mutex collisions (and hence context switches) only happen if they are
// absolutely essential. However, on some platforms, creating a lot of
// mutexes can slow down the whole OS, so use this option with care.
//
// USING THE LIBRARY
//
// See the full documentation at http://sigslot.sourceforge.net/
//
//
// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur. #ifndef _SIGSLOT_H__
#define _SIGSLOT_H__ #include <list>
#include <set>
#include <stdlib.h> // On our copy of sigslot.h, we set single threading as default.
#define SIGSLOT_DEFAULT_MT_POLICY single_threaded #if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
# define _SIGSLOT_SINGLE_THREADED
#elif defined(WIN32)
# define _SIGSLOT_HAS_WIN32_THREADS
# if !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
# endif
# include <windows.h>
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
# define _SIGSLOT_HAS_POSIX_THREADS
# include <pthread.h>
#else
# define _SIGSLOT_SINGLE_THREADED
#endif #ifndef SIGSLOT_DEFAULT_MT_POLICY
# ifdef _SIGSLOT_SINGLE_THREADED
# define SIGSLOT_DEFAULT_MT_POLICY single_threaded
# else
# define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
# endif
#endif // TODO: change this namespace to talk_base?
namespace sigslot { class single_threaded
{
public:
single_threaded()
{
;
} virtual ~single_threaded()
{
;
} virtual void lock()
{
;
} virtual void unlock()
{
;
}
}; #ifdef _SIGSLOT_HAS_WIN32_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
multi_threaded_global()
{
static bool isinitialised = false; if (!isinitialised)
{
InitializeCriticalSection(get_critsec());
isinitialised = true;
}
} multi_threaded_global(const multi_threaded_global&)
{
;
} virtual ~multi_threaded_global()
{
;
} virtual void lock()
{
EnterCriticalSection(get_critsec());
} virtual void unlock()
{
LeaveCriticalSection(get_critsec());
} private:
CRITICAL_SECTION* get_critsec()
{
static CRITICAL_SECTION g_critsec;
return &g_critsec;
}
}; class multi_threaded_local
{
public:
multi_threaded_local()
{
InitializeCriticalSection(&m_critsec);
} multi_threaded_local(const multi_threaded_local&)
{
InitializeCriticalSection(&m_critsec);
} virtual ~multi_threaded_local()
{
DeleteCriticalSection(&m_critsec);
} virtual void lock()
{
EnterCriticalSection(&m_critsec);
} virtual void unlock()
{
LeaveCriticalSection(&m_critsec);
} private:
CRITICAL_SECTION m_critsec;
};
#endif // _SIGSLOT_HAS_WIN32_THREADS #ifdef _SIGSLOT_HAS_POSIX_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
multi_threaded_global()
{
pthread_mutex_init(get_mutex(), NULL);
} multi_threaded_global(const multi_threaded_global&)
{
;
} virtual ~multi_threaded_global()
{
;
} virtual void lock()
{
pthread_mutex_lock(get_mutex());
} virtual void unlock()
{
pthread_mutex_unlock(get_mutex());
} private:
pthread_mutex_t* get_mutex()
{
static pthread_mutex_t g_mutex;
return &g_mutex;
}
}; class multi_threaded_local
{
public:
multi_threaded_local()
{
pthread_mutex_init(&m_mutex, NULL);
} multi_threaded_local(const multi_threaded_local&)
{
pthread_mutex_init(&m_mutex, NULL);
} virtual ~multi_threaded_local()
{
pthread_mutex_destroy(&m_mutex);
} virtual void lock()
{
pthread_mutex_lock(&m_mutex);
} virtual void unlock()
{
pthread_mutex_unlock(&m_mutex);
} private:
pthread_mutex_t m_mutex;
};
#endif // _SIGSLOT_HAS_POSIX_THREADS template<class mt_policy>
class lock_block
{
public:
mt_policy *m_mutex; lock_block(mt_policy *mtx)
: m_mutex(mtx)
{
m_mutex->lock();
} ~lock_block()
{
m_mutex->unlock();
}
}; class has_slots_interface; template<class mt_policy>
class _connection_base0
{
public:
virtual ~_connection_base0() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit() = 0;
virtual _connection_base0* clone() = 0;
virtual _connection_base0* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class mt_policy>
class _connection_base1
{
public:
virtual ~_connection_base1() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type) = 0;
virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class arg2_type, class mt_policy>
class _connection_base2
{
public:
virtual ~_connection_base2() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type, arg2_type) = 0;
virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone() = 0;
virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
class _connection_base3
{
public:
virtual ~_connection_base3() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type, arg2_type, arg3_type) = 0;
virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone() = 0;
virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
class _connection_base4
{
public:
virtual ~_connection_base4() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type) = 0;
virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone() = 0;
virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class mt_policy>
class _connection_base5
{
public:
virtual ~_connection_base5() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type) = 0;
virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>* clone() = 0;
virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class mt_policy>
class _connection_base6
{
public:
virtual ~_connection_base6() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
arg6_type) = 0;
virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>* clone() = 0;
virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class arg7_type, class mt_policy>
class _connection_base7
{
public:
virtual ~_connection_base7() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
arg6_type, arg7_type) = 0;
virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>* clone() = 0;
virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
class _connection_base8
{
public:
virtual ~_connection_base8() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
arg6_type, arg7_type, arg8_type) = 0;
virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone() = 0;
virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; class _signal_base_interface
{
public:
virtual void slot_disconnect(has_slots_interface* pslot) = 0;
virtual void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) = 0;
}; template<class mt_policy>
class _signal_base : public _signal_base_interface, public mt_policy
{
}; class has_slots_interface
{
public:
has_slots_interface()
{
;
} virtual void signal_connect(_signal_base_interface* sender) = 0; virtual void signal_disconnect(_signal_base_interface* sender) = 0; virtual ~has_slots_interface()
{
} virtual void disconnect_all() = 0;
}; template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class has_slots : public has_slots_interface, public mt_policy
{
private:
typedef std::set<_signal_base_interface*> sender_set;
typedef sender_set::const_iterator const_iterator; public:
has_slots()
{
;
} has_slots(const has_slots& hs)
{
lock_block<mt_policy> lock(this);
const_iterator it = hs.m_senders.begin();
const_iterator itEnd = hs.m_senders.end(); while (it != itEnd)
{
(*it)->slot_duplicate(&hs, this);
m_senders.insert(*it);
++it;
}
} void signal_connect(_signal_base_interface* sender)
{
lock_block<mt_policy> lock(this);
m_senders.insert(sender);
} void signal_disconnect(_signal_base_interface* sender)
{
lock_block<mt_policy> lock(this);
m_senders.erase(sender);
} virtual ~has_slots()
{
disconnect_all();
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
const_iterator it = m_senders.begin();
const_iterator itEnd = m_senders.end(); while (it != itEnd)
{
(*it)->slot_disconnect(this);
++it;
} m_senders.erase(m_senders.begin(), m_senders.end());
} private:
sender_set m_senders;
}; template<class mt_policy>
class _signal_base0 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base0<mt_policy> *> connections_list; _signal_base0()
{
;
} _signal_base0(const _signal_base0& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} ~_signal_base0()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class mt_policy>
class _signal_base1 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base1<arg1_type, mt_policy> *> connections_list; _signal_base1()
{
;
} _signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base1()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class arg2_type, class mt_policy>
class _signal_base2 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base2<arg1_type, arg2_type, mt_policy> *>
connections_list; _signal_base2()
{
;
} _signal_base2(const _signal_base2<arg1_type, arg2_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base2()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
class _signal_base3 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base3<arg1_type, arg2_type, arg3_type, mt_policy> *>
connections_list; _signal_base3()
{
;
} _signal_base3(const _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base3()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
class _signal_base4 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base4<arg1_type, arg2_type, arg3_type,
arg4_type, mt_policy> *> connections_list; _signal_base4()
{
;
} _signal_base4(const _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base4()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class mt_policy>
class _signal_base5 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base5<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, mt_policy> *> connections_list; _signal_base5()
{
;
} _signal_base5(const _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base5()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class mt_policy>
class _signal_base6 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base6<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, mt_policy> *> connections_list; _signal_base6()
{
;
} _signal_base6(const _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base6()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class arg7_type, class mt_policy>
class _signal_base7 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base7<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, arg7_type, mt_policy> *> connections_list; _signal_base7()
{
;
} _signal_base7(const _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base7()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
class _signal_base8 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base8<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> *>
connections_list; _signal_base8()
{
;
} _signal_base8(const _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base8()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; template<class dest_type, class mt_policy>
class _connection0 : public _connection_base0<mt_policy>
{
public:
_connection0()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection0(dest_type* pobject, void (dest_type::*pmemfun)())
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection0()
{
} virtual _connection_base0<mt_policy>* clone()
{
return new _connection0<dest_type, mt_policy>(*this);
} virtual _connection_base0<mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit()
{
(m_pobject->*m_pmemfun)();
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)();
}; template<class dest_type, class arg1_type, class mt_policy>
class _connection1 : public _connection_base1<arg1_type, mt_policy>
{
public:
_connection1()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection1()
{
} virtual _connection_base1<arg1_type, mt_policy>* clone()
{
return new _connection1<dest_type, arg1_type, mt_policy>(*this);
} virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1)
{
(m_pobject->*m_pmemfun)(a1);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type);
}; template<class dest_type, class arg1_type, class arg2_type, class mt_policy>
class _connection2 : public _connection_base2<arg1_type, arg2_type, mt_policy>
{
public:
_connection2()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
arg2_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection2()
{
} virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone()
{
return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>(*this);
} virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1, arg2_type a2)
{
(m_pobject->*m_pmemfun)(a1, a2);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type, arg2_type);
}; template<class dest_type, class arg1_type, class arg2_type, class arg3_type, class mt_policy>
class _connection3 : public _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>
{
public:
_connection3()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
arg2_type, arg3_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection3()
{
} virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone()
{
return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>(*this);
} virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3)
{
(m_pobject->*m_pmemfun)(a1, a2, a3);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type);
}; template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
class arg4_type, class mt_policy>
class _connection4 : public _connection_base4<arg1_type, arg2_type,
arg3_type, arg4_type, mt_policy>
{
public:
_connection4()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection4()
{
} virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone()
{
return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(*this);
} virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3,
arg4_type a4)
{
(m_pobject->*m_pmemfun)(a1, a2, a3, a4);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type,
arg4_type);
}; template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
class arg4_type, class arg5_type, class mt_policy>
class _connection5 : public _connection_base5<arg1_type, arg2_type,
arg3_type, arg4_type, arg5_type, mt_policy>
{
public:
_connection5()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection5()
{
} virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>* clone()
{
return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>(*this);
} virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5)
{
(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type);
}; template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
class arg4_type, class arg5_type, class arg6_type, class mt_policy>
class _connection6 : public _connection_base6<arg1_type, arg2_type,
arg3_type, arg4_type, arg5_type, arg6_type, mt_policy>
{
public:
_connection6()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection6()
{
} virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>* clone()
{
return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>(*this);
} virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6)
{
(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type);
}; template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
class arg4_type, class arg5_type, class arg6_type, class arg7_type, class mt_policy>
class _connection7 : public _connection_base7<arg1_type, arg2_type,
arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
{
public:
_connection7()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection7()
{
} virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>* clone()
{
return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>(*this);
} virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6, arg7_type a7)
{
(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type);
}; template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
class arg4_type, class arg5_type, class arg6_type, class arg7_type,
class arg8_type, class mt_policy>
class _connection8 : public _connection_base8<arg1_type, arg2_type,
arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
{
public:
_connection8()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
arg7_type, arg8_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection8()
{
} virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone()
{
return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(*this);
} virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
{
(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type);
}; template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal0 : public _signal_base0<mt_policy>
{
public:
typedef _signal_base0<mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal0()
{
;
} signal0(const signal0<mt_policy>& s)
: _signal_base0<mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)())
{
lock_block<mt_policy> lock(this);
_connection0<desttype, mt_policy>* conn =
new _connection0<desttype, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(); it = itNext;
}
} void operator()()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(); it = itNext;
}
}
}; template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal1 : public _signal_base1<arg1_type, mt_policy>
{
public:
typedef _signal_base1<arg1_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal1()
{
;
} signal1(const signal1<arg1_type, mt_policy>& s)
: _signal_base1<arg1_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
{
lock_block<mt_policy> lock(this);
_connection1<desttype, arg1_type, mt_policy>* conn =
new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1); it = itNext;
}
} void operator()(arg1_type a1)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1); it = itNext;
}
}
}; template<class arg1_type, class arg2_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal2 : public _signal_base2<arg1_type, arg2_type, mt_policy>
{
public:
typedef _signal_base2<arg1_type, arg2_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal2()
{
;
} signal2(const signal2<arg1_type, arg2_type, mt_policy>& s)
: _signal_base2<arg1_type, arg2_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
arg2_type))
{
lock_block<mt_policy> lock(this);
_connection2<desttype, arg1_type, arg2_type, mt_policy>* conn = new
_connection2<desttype, arg1_type, arg2_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1, arg2_type a2)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2); it = itNext;
}
} void operator()(arg1_type a1, arg2_type a2)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2); it = itNext;
}
}
}; template<class arg1_type, class arg2_type, class arg3_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal3 : public _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>
{
public:
typedef _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal3()
{
;
} signal3(const signal3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
: _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
arg2_type, arg3_type))
{
lock_block<mt_policy> lock(this);
_connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>* conn =
new _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>(pclass,
pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1, arg2_type a2, arg3_type a3)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3); it = itNext;
}
} void operator()(arg1_type a1, arg2_type a2, arg3_type a3)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3); it = itNext;
}
}
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal4 : public _signal_base4<arg1_type, arg2_type, arg3_type,
arg4_type, mt_policy>
{
public:
typedef _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal4()
{
;
} signal4(const signal4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
: _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type))
{
lock_block<mt_policy> lock(this);
_connection4<desttype, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>*
conn = new _connection4<desttype, arg1_type, arg2_type, arg3_type,
arg4_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4); it = itNext;
}
} void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4); it = itNext;
}
}
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal5 : public _signal_base5<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, mt_policy>
{
public:
typedef _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal5()
{
;
} signal5(const signal5<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>& s)
: _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type))
{
lock_block<mt_policy> lock(this);
_connection5<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, mt_policy>* conn = new _connection5<desttype, arg1_type, arg2_type,
arg3_type, arg4_type, arg5_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5); it = itNext;
}
} void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5); it = itNext;
}
}
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal6 : public _signal_base6<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, mt_policy>
{
public:
typedef _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal6()
{
;
} signal6(const signal6<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>& s)
: _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
{
lock_block<mt_policy> lock(this);
_connection6<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, mt_policy>* conn =
new _connection6<desttype, arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5, a6); it = itNext;
}
} void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5, a6); it = itNext;
}
}
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class arg7_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal7 : public _signal_base7<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
{
public:
typedef _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal7()
{
;
} signal7(const signal7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>& s)
: _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
arg7_type))
{
lock_block<mt_policy> lock(this);
_connection7<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, mt_policy>* conn =
new _connection7<desttype, arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6, arg7_type a7)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5, a6, a7); it = itNext;
}
} void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6, arg7_type a7)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5, a6, a7); it = itNext;
}
}
}; template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal8 : public _signal_base8<arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
{
public:
typedef _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal8()
{
;
} signal8(const signal8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
: _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
arg7_type, arg8_type))
{
lock_block<mt_policy> lock(this);
_connection8<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* conn =
new _connection8<desttype, arg1_type, arg2_type, arg3_type,
arg4_type, arg5_type, arg6_type, arg7_type,
arg8_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8); it = itNext;
}
} void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8); it = itNext;
}
}
}; }; // namespace sigslot #endif // _SIGSLOT_H__s

c++之sigslot库的更多相关文章

  1. 信号槽库:sigslot.h和sigc++使用

    用qt的知道,qt有方便简单的信号槽机制,但需要专门的qt工具处理. 如果想直接使信号槽就可以使用sigslot库,或者sigc++库,或者boost中的signals,这里介绍sigslot和sig ...

  2. Sigslot介绍

    最近在看delta3d开源引擎,最底层封装的消息机制,是基于其has_slots,搜索了一下其资料发现是一个很好用的C++库,先对其简单介绍一下. 首先说下插槽机制. 插槽系统常用的有三种:boost ...

  3. C++消息框架-基于sigslot

    目录 一.简介 二.消息 三.发送者 1.发送消息函数 2.新增一个接收者函数 3.移除一个接收者函数 四.接收者 五.功能测试 1.消息接收类 2.测试代码 3.测试结果 六.源码 一.简介 上一篇 ...

  4. 1.1. 如何使用XproerUI库

    项目类型:MFC   XproerUI结构: 3rd                    第三方库目录   cximage     dll                编译的DLL目录   pug ...

  5. 如何使用XproerUI库(WTL)-XproerUI界面库教程

    版权所有 2009-2015 荆门泽优软件有限公司 保留所有权利 产品首页:http://www.ncmem.com/apps/xproerui/index.asp 开发文档(SkinStudio): ...

  6. c++ 第三方库收集

    1.boost 这个使用的人多不多说了 2.pthread windows下的posix线程实现 3.libcurl 一个有名的开源网络爬虫库 阿里旺旺中使用到了 4.libeay32 OpenSSL ...

  7. 菜鸟Python学习笔记第一天:关于一些函数库的使用

    2017年1月3日 星期二 大一学习一门新的计算机语言真的很难,有时候连函数拼写出错查错都能查半天,没办法,谁让我英语太渣. 关于计算机语言的学习我想还是从C语言学习开始为好,Python有很多语言的 ...

  8. TinyWeb v1.0 正式完成第一个Release版本(功能基于 libuv 跨平台库)

    使用方法很简单,很容易融入现有项目,使现有项目拥有Web网站功能和WebSocket,以及Socket直连! 并且包含了一个跨平台(windows/linux)工具集合; 嗯,也挺棒的^,^ 在项目中 ...

  9. 在 Laravel 中使用图片处理库 Integration/Image

    系统需求 PHP >= 5.3 Fileinfo Extension GD Library (>=2.0) … or … Imagick PHP extension (>=6.5.7 ...

随机推荐

  1. FESTUNG — 3. 采用 HDG 方法求解对流问题

    FESTUNG - 3. 采用 HDG 方法求解对流问题[1] 1. 控制方程 线性对流问题控制方程为 \[\begin{array}{ll} \partial_t c + \nabla \cdot ...

  2. [linux] mv: cannot move $ to $: Directory not empty

    最近测试某流程时,跑的过程报错了,于是检查脚本修改后重新测试.脚本是改过来了,但在shell中运行某步时碰到了如题报错! $ mv MP_genus_network_files/ tax_networ ...

  3. 基于PASA进行基因预测

    PASA, acronym for Program to Assemble Spliced Alignments, is a eukaryotic genome annotation tool tha ...

  4. perl中tr的用法(转载)

    转载:http://blog.sina.com.cn/s/blog_4a0824490101hncz.html (1)/c表示把匹配不上的字符进行替换. $temp="AAAABCDEF&q ...

  5. 18-Rotate Array-Leetcode

    Rotate an array of n elements to the right by k steps. For example, with n = 7 and k = 3, the array ...

  6. Kafka入门教程(一)

    转自:https://blog.csdn.net/yuan_xw/article/details/51210954 1 Kafka入门教程 1.1 消息队列(Message Queue) Messag ...

  7. nodejs-os模块

    JavaScript 标准参考教程(alpha) 草稿二:Node.js os模块 GitHub TOP os模块 来自<JavaScript 标准参考教程(alpha)>,by 阮一峰 ...

  8. 修改 Gradle 插件(Plugins)的下载地址(repositories)

    Gradle 也可以用下面的方式声明使用的插件: 1234 // build.gradleplugins { id 'com.example.plugin', version '1.0'} 其实是从 ...

  9. OpenStack之八: network服务(端口9696)

    注意此处用的一个网络,暂时不用启动第二个网官网地址 https://docs.openstack.org/neutron/stein/install/controller-install-rdo.ht ...

  10. Vue.js 学习

    一,Vue.js 介绍 Vue 是一套用于构建用户界面的渐进式javascript框架,与其它大型框架不同的是:Vue被设计为可以自底向上逐层应用.Vue的核心库只关注视图层,不仅易于上手,还便于与第 ...