\((gcd(a,b) == axorb)==>b = a-gcd(a,b)\)的证明

\[(gcd(a,b) == axorb)==>b = a-gcd(a,b)
\]

证明$$a-b>=gcd(a,b)$$

设\(gcd(a,b) = t\),那么\(a = k1*t,b = k2*t\),所以因为\(gcd(a,b) > 0\),所以\(axorb!=0\),假设a > b,所以\(a-b = c*t >= gcd(a,b)\) 。

证明$$a-b <= axorb$$,

把a,b换成二进制来按每位来考虑,共有四种可能$$(1,0) = (-)1 (xor)1||(1,1) = (-)0(xor)(0)||(0,1) = (-)-1(xor)1||(0,0) = (-)0(xor)0$$所以可以看出\(a-b <= axorb\).

因为\(gcd(a,b) == axorb\),所以有\(a-b == gcd(a,b)\);

题目链接

(gcd(a,b) == axorb)==>b = a-gcd(a,b)的更多相关文章

  1. Fib的奇怪定理 : gcd(F[n],F[m])=F[gcd(n,m)]

    引理1:gcd(F[n],f[n-1])=1 因为 F[n]=f[n-1]+F[n-2] 所以 gcd(F[n],f[n-1]) = gcd(F[n-1]+F[n-2],F[n-1]) gcd的更损相 ...

  2. 斐波那契数性质 gcd(F[n],F[m])=F[gcd(n,m)]

    引理1 结论: \[F(n)=F(m)F(n-m+1)+F(m-1)F(n-m)\] 推导: \[ \begin{aligned} F(n) &= F(n-1)+F(n-2) \\ & ...

  3. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

  4. 2017CCPC 杭州 J. Master of GCD【差分标记/线段树/GCD】

    给你一个n个初始元素都为1的序列和m个询问q. 询问格式为:l r x(x为2or3) 最后求1~n所有数的GCD GCD:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是 ...

  5. Solve Equation gcd(x,y)=gcd(x+y,lcm(x,y)) gcd(x,y)=1 => gcd(x*y,x+y)=1

    /** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生 ...

  6. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  7. GCD封装的个人理解和应用

    GCD封装的个人理解和应用 特点 >>将GCD封装,使我们从繁琐的方法记忆中解脱出来,能够直接快速的应用. 使用方法 1.将工程中的GCD文件中的9个文件拖入自己的工程中(你自己最好建一个 ...

  8. iOS-多线程之GCD(原创)

    前言 GCD 全称 Grand Central DisPath NSOperation便是基于GCD的封装 基础知识 1.GCD的优势 (1)为多核的并行运算提出了解决方案 (2)GCD会自动利用更多 ...

  9. ios基础篇(二十九)—— 多线程(Thread、Cocoa operations和GCD)

    一.进程与线程 1.进程 进程是指在系统中正在运行的一个应用程序,每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内: 如果我们把CPU比作一个工厂,那么进程就好比工厂的车间,一个工厂有 ...

随机推荐

  1. Linux搭建yum仓库

    1.安装nginx 2.为nginx搭建共享目录 3.安装createrepo,创建存储库 4.客户端测试 1.安装nginx yum list |grep nginx #查看是否有可用的nginx包 ...

  2. spring整合mybatis — 更新完毕

    1.准备工作 -- 导入依赖 <dependency> <groupId>org.springframework</groupId> <artifactId& ...

  3. day04:Python学习笔记

    day04:Python学习笔记 1.算数运算符 1.算数运算符 print(10 / 3) #结果带小数 print(10 // 3) #结果取整数,不是四舍五入 print(10 % 3) #结果 ...

  4. Scala(八)【面向对象总结】

    面向对象总结 面向对象 1.scala包 1.声明包 1.在文件第一行通过package 包名 2.package 包名{ .... } 第二种方法,包名只能在target目录才能看到 2.导入包 1 ...

  5. 【leetcode】222. Count Complete Tree Nodes(完全二叉树)

    Given the root of a complete binary tree, return the number of the nodes in the tree. According to W ...

  6. 【swift】CoreData Crash(崩溃)(Failed to call designated initializer on NSManagedObject class)

    感谢另一篇博客:https://blog.csdn.net/devday/article/details/6577985 里面的图片和介绍,发现问题如他描述的一样,没有bundle 我的Xcode版本 ...

  7. Swift alert 倒计时

    let title: String = "您的开奖时间为" let time: String = "2017-10-23 12:23:18" let count ...

  8. Linux学习 - 输入输出重定向,管道符,通配符

    一.键盘输入读取read read [选项] [变量名] -p [显示信息] 在等待read输入时,输出提示信息 -t [秒数] 指定read输入等待时间 -n [字符数] 指定read只接收n个字符 ...

  9. Linux基础命令---lynx浏览器

    lynx lynx是一个字符界面的全功能www浏览器,它没有图形界面,因此占用的资源较少. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法     ...

  10. java静态方法调用非静态方法

    我们都知道,静态static方法中不能调用非静态non-static方法,准确地说是不能直接调用non-static方法.但是可以通过将一个对象的引用传入static方法中,再去调用该对象的non-s ...