泛型Binary Search Tree实现,And和STL map比较的经营业绩
问题叙述性说明:
1.binary search tree它是一种二进制树的。对于key值。比当前节点左孩子少大于右子。
2.binary search tree不是自平衡树。所以,当插入数据不是非常随机时候,性能会接近O(N)。N是树中节点数目;
3.理想状态下。时间复杂度是O(lgN), N是树中节点的数目;
4.以下给出一个简单的实现,并比較其和STL map的性能。一样的操作,大约耗时为STL map 的2/3。
代码例如以下:
#ifndef _BINARY_SEARCH_TREE_H_
#define _BINARY_SEARCH_TREE_H_ #include <functional>
#include <algorithm>
#include <iostream>
#include <map> #include "windows.h" template<class T, class V, class Cmp = std::less<T> >
class BinarySearchTree
{
public: // node struct
typedef struct tagBSNode
{
T key;
V value;
tagBSNode* leftNode;
tagBSNode* rightNode; tagBSNode():key(), value(),
leftNode(0),
rightNode(0)
{ } tagBSNode( const T& _key, const V& _value ):key(_key),
value(_value),
leftNode(0),
rightNode(0)
{ } }BSTNode, *pBSTNode; /*
* Constructor
*
*/
BinarySearchTree():m_root(0), m_size(0)
{ } /*
* Copy constructor
*
*/
BinarySearchTree( const BinarySearchTree& rhs )
{
m_root = Clone( rhs.m_root );
m_size = rhs.m_size;
} /*
* Destructor
*
*/
~BinarySearchTree()
{
Clear();
} /*
* assignment operator overload
*
*/
BinarySearchTree& operator = ( const BinarySearchTree& rhs )
{
if( this != &rhs )
{
Clear(); m_root = Clone( rhs.m_root );
m_size = rhs.m_size;
} return *this;
} /*
* Clear all node
*
*/
void Clear()
{
Clear( m_root );
m_size = 0;
} /*
* check whether or not empty
*
*/
bool IsEmpty() const
{
return m_size == 0;
} /*
* Retrieve the number of node in tree
*
*/
size_t Size() const
{
return m_size;
} /*
*
*
*/
size_t GetSize() const // only for test
{
return Size( m_root );
} /*
* Insert key and value pair to tree
*
*/
void Insert( const T& key, const V& value )
{
Insert( m_root, key, value );
} /*
* Delete node from tree for given key
*
*/
void Delete( const T& key )
{
Delete( m_root, key );
} /*
* Find element from tree for given key
*
*/
V* Find( const T& key )
{
pBSTNode node = Find( m_root, key );
if( node )
return &node->value; return 0;
} /*
* Find the the element of max key
*
*/
V* FindMax( T& key )
{
pBSTNode node = FindMax( m_root );
if( node )
{
key = node->key;
return &node->value;
} return 0;
} /*
* Find the the element of min key
*
*/
V* FinMin( T& key )
{
pBSTNode node = FindMin( m_root );
if( node )
{
key = node->key;
return &node->value;
} return 0;
} /*
* inoder traversal
*
*/
void InorderVisitor( void (*visitor)( const T&, const V& ) )
{
InorderVisitor( m_root, visitor );
} /*
* preoder traversal
*
*/
void PreOrderVisitor( void (*visitor)( const T&, const V& ) )
{
PreOrderVisitor( m_root, visitor );
} /*
* postoder traversal
*
*/
void PostOrderVisitor( void (*visitor)( const T&, const V& ) )
{
PostOrderVisitor( m_root, visitor );
} protected: /*
* Implement clone operation
*
*/
pBSTNode Clone( pBSTNode root )
{
if( 0 == root )
return root; pBSTNode node = new BSTNode( root->key, root->value );
node->leftNode = Clone( root->leftNode );
node->rightNode = Clone( root->rightNode ); return node;
} /*
* Implement clear opreation
*
*/
void Clear( pBSTNode& root )
{
if( 0 == root )
return; Clear( root->leftNode );
Clear( root->rightNode ); delete root;
root = 0; } /*
* Retrieve the number of node by way of recursive
*
*/
size_t Size( pBSTNode root ) const
{
if( 0 == root )
return 0; return 1 + Size( root->leftNode ) + Size( root->rightNode );
} /*
* Implement insert operation
*
*/
void Insert( pBSTNode& root,const T& key, const V& value )
{
if( 0 == root )
{
root = new BSTNode( key, value );
m_size++;
} if( root->key < key )
{
Insert( root->rightNode, key, value );
}
else if( root->key > key )
{
Insert( root->leftNode, key, value );
}
} /*
* Implement delete operation
*
*/
void Delete( pBSTNode& root, const T& key )
{
if( 0 == root )
return; if( root->key < key )
{
Delete( root->rightNode, key );
}
else if( root->key > key )
{
Delete( root->leftNode, key );
}
else
{
if( root->leftNode && root->rightNode )
{
pBSTNode minNode = FindMin( root->rightNode );
root->key = minNode->key;
root->value = minNode->value; Delete( root->rightNode, minNode->key );
}
else
{
pBSTNode node = root;
root = root->leftNode ? root->leftNode: root->rightNode; delete node;
node = 0; m_size--; //very important } }
} /*
* Implement find operation
*
*/
pBSTNode Find( pBSTNode root, const T& key )
{
if( 0 == root )
return root; if( root->key < key )
{
return Find( root->rightNode, key );
}
else if( root->key > key )
{
return Find( root->leftNode, key );
}
else
{
return root;
}
} /*
* Find implement no recursive
*
*/
pBSTNode FindUtil( pBSTNode root, const T& key )
{
if( 0 == root )
return root; pBSTNode cur = root;
while( root )
{
cur = root;
if( root->key < key )
{
root = root->rightNode;
}
else if( root->key > key )
{
root = root->leftNode;
}
else
{
break;
}
} if( cur && cur->key == key )
return cur; return 0;
} /*
* Implement find max element operation
*
*/
pBSTNode FindMax( pBSTNode root )
{
if( 0 == root )
return root; while( root->rightNode )
{
root = root->rightNode;
} return root;
} /*
* Implement find min element operation
*
*/
pBSTNode FindMin( pBSTNode root )
{
if( 0 == root )
return root; while( root->leftNode )
{
root = root->leftNode;
} return root;
} /*
* Implement inorder traversal
*
*/
void InorderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
{
if( 0 == root )
return; InorderVisitor( root->leftNode, visitor );
visitor( root->key, root->value );
InorderVisitor( root->rightNode, visitor );
} /*
* Implement preorder traversal
*
*/
void PreOrderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
{
if( 0 == root )
return; visitor( root->key, root->value );
InorderVisitor( root->leftNode, visitor );
InorderVisitor( root->rightNode, visitor );
} /*
* Implement postorder traversal
*
*/
void PostOrderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
{
if( 0 == root )
return; InorderVisitor( root->leftNode, visitor );
InorderVisitor( root->rightNode, visitor );
visitor( root->key, root->value );
} protected: pBSTNode m_root; size_t m_size;
}; /*
* Test STL map
*
*/
void TestSTLMapBST()
{
const int Len = 200000;
//int key[Len];
//int value[Len]; int* key = new int[Len];
int* value = new int[Len]; for( int i = 0; i < Len; i++ )
{
key[i] = i;
value[i] = i;
} std::random_shuffle( key, key + Len );
std::random_shuffle( value, value + Len ); unsigned long start = GetTickCount(); std::map<int, int> treeObj;
for( int i = 0; i < Len; i++ )
{
treeObj.insert( std::make_pair( key[i], value[i] ) );
} size_t count = treeObj.size(); for( int i = 0; i < Len; i++ )
{
std::map<int, int>::iterator iter = treeObj.find( key[i] );
assert( iter != treeObj.end() );
assert( iter->second == value[i] );
} for( int i = 0; i < Len; i++ )
{
if( !(i % 15) )
{
treeObj.erase( key[i] );
std::map<int, int>::iterator iter = treeObj.find( key[i] );
assert( iter == treeObj.end() ); }
} unsigned long interval = GetTickCount() - start;
printf( " STL map consume time is %d \n", interval ); delete [] key;
delete [] value; } /*
* vistior function for output information when traversal tree
*
*/
template<class T, class V>
void Visitor( const T& key, const V& value )
{
std::cout << "key: " << key << "," <<"value: " << value << std::endl;
} /*
* unit test
*
*/
void TestBST()
{
const int Len = 200000;
//int key[Len];
//int value[Len]; int* key = new int[Len];
int* value = new int[Len]; for( int i = 0; i < Len; i++ )
{
key[i] = i;
value[i] = i;
} std::random_shuffle( key, key + Len );
std::random_shuffle( value, value + Len ); unsigned long start = GetTickCount(); BinarySearchTree<int, int> treeObj;
for( int i = 0; i < Len; i++ )
{
treeObj.Insert( key[i], value[i] );
} for( int i = 0; i < Len; i++ )
{
int* val = treeObj.Find( key[i] );
assert( *val == value[i] );
} int minKey = -1;
int* minValue = treeObj.FinMin( minKey );
assert( minKey == 0 ); int maxKey = -1;
int* maxValue = treeObj.FindMax( maxKey );
assert( maxKey == Len - 1 ); size_t size = treeObj.Size();
assert( size == Len ); int flagCount = 0;
for( int i = 0; i < Len; i++ )
{
if( !(i % 15) )
{
treeObj.Delete( i );
int* val = treeObj.Find( i );
assert( !val ); flagCount++;
}
} unsigned long interval = GetTickCount() - start;
printf( " binary search tree consume time is %d \n", interval ); size = treeObj.Size();
size_t count = treeObj.GetSize(); BinarySearchTree<int, int> newTreeObj;
for( int i = 0; i < 10; i++ )
{
newTreeObj.Insert( key[i], value[i] );
} treeObj = newTreeObj;
newTreeObj.Clear(); std::cout<< "begin inorder traversal " << std::endl;
treeObj.InorderVisitor( Visitor<int, int> ); std::cout<< "begin postorder traversal " << std::endl;
treeObj.PostOrderVisitor( Visitor<int, int> ); std::cout<< "begin preorder traversal " << std::endl;
treeObj.PreOrderVisitor( Visitor<int, int> ); treeObj.Clear(); delete [] key;
delete [] value;
} void TestBSTSuite()
{
TestSTLMapBST();
TestBST();
} #endif
泛型Binary Search Tree实现,And和STL map比较的经营业绩的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- 二叉搜索树(Binary Search Tree)(Java实现)
@ 目录 1.二叉搜索树 1.1. 基本概念 1.2.树的节点(BinaryNode) 1.3.构造器和成员变量 1.3.公共方法(public method) 1.4.比较函数 1.5.contai ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode: Convert sorted list to binary search tree (No. 109)
Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...
- [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值
Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
- [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
随机推荐
- Oracle静态监听与动态监听概念全解析
基于11g,linux5.5做出的测试,单实例数据库做出的测试. 1.注册 Instance到监听器去注册自己的Instance_name与ORACLE_HOME,还可以选择添加global_dbna ...
- VC添加背景图片 的一种方法
.如果程序是新建的对话框,要给其添加背景图片的步骤: 1)加入消息函数:afx_msg void OnPaint(); 2)BEGIN_MESSAGE_MAP(QueryDlg, CDialog) O ...
- java jquery 函数多參数传递
业务需求: 名次 伙伴 业绩 签单 面谈 每日目标 1 文彬 5100 6 10 查看目标 2 马红月 4550 4 6 查看目标 3 王刚 4100 3 9 查看目标 4 郭亚凯 3450 4 ...
- android百度地图打包混淆 用不了No such file or directory (2) com.baidu.mapapi.BMapManager.init(Unknown Source)
调用了百度地图地图开发包是baidumapapi_v2_1_1.jar,定位SDK版本是locSDK_3.3.jar 调试的时候能运行!可是打包签名后就运行不了! baidu google 了好久! ...
- 单页应用Scrat实践
单页应用Scrat实践 1.开始 随着前端工程化深入研究,前端工程师现在碉堡了,甚至搞了个自己的前端网站http://div.io/需要邀请码才能注册,不过里面的技术确实牛.距离顶级的前端架构,目前博 ...
- Delphi的VMT的结构图,很清楚
Every Delphi class is defined internally by its vmt—its virtual-method table. The vmt contains a li ...
- casio 手表北京维修网络
http://www.casio.com.cn/support/service/wat/28.html 手表北京维修网络 号新东安广场2座11层1103室电话:010-65157818/8391585 ...
- POJ 3974 最长回文字串(manacher算法)
题意:给出一个字符串,求出最长回文字串. 思路:一开始我直接上了后缀数组DC3的解法,然后MLE了.看了DISCUSS发现还有一种计算回文字串更加优越的算法,就是manacher算法.就去学习了一下, ...
- Windows 8.1下 MySQL绿色版安装配置与使用
原文:Windows 8.1下 MySQL绿色版安装配置与使用 Mysql-5.6.17-winx64操作步骤: 一.安装MySQL数据库 1.下载. 下载地址:http://downloads.my ...
- Android中的动画具体解释系列【4】——Activity之间切换动画
前面介绍了Android中的逐帧动画和补间动画,并实现了简单的自己定义动画.这一篇我们来看看怎样将Android中的动画运用到实际开发中的一个场景--Activity之间跳转动画. 一.定义动画资源 ...