像51一样操作STM32的IO(转)
//-----------------------------------------------------------------------------------------------------
//别名区 ADDRESS=0x4200 0000 + (0x0001 100C*0x20) + (bitx*4) ;bitx:第x位
// 把“位段地址+位序号”转换别名地址宏
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
//把该地址转换成一个指针
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr, bitnum) MEM_ADDR( BITBAND(addr, bitnum) ) #define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C
#define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C
#define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C
#define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C
#define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808
#define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08
#define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008
#define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408
#define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808 //-----------------------------------------------------
#define PA0 BIT_ADDR(GPIOA_ODR_Addr, 0) //输出
#define PA1 BIT_ADDR(GPIOA_ODR_Addr, 1) //输出
#define PA2 BIT_ADDR(GPIOA_ODR_Addr, 2) //输出
#define PA3 BIT_ADDR(GPIOA_ODR_Addr, 3) //输出
#define PA4 BIT_ADDR(GPIOA_ODR_Addr, 4) //输出
#define PA5 BIT_ADDR(GPIOA_ODR_Addr, 5) //输出
#define PA6 BIT_ADDR(GPIOA_ODR_Addr, 6) //输出
#define PA7 BIT_ADDR(GPIOA_ODR_Addr, 7) //输出
#define PA8 BIT_ADDR(GPIOA_ODR_Addr, 8) //输出
#define PA9 BIT_ADDR(GPIOA_ODR_Addr, 9) //输出
#define PA10 BIT_ADDR(GPIOA_ODR_Addr, 10) //输出
#define PA11 BIT_ADDR(GPIOA_ODR_Addr, 11) //输出
#define PA12 BIT_ADDR(GPIOA_ODR_Addr, 12) //输出
#define PA13 BIT_ADDR(GPIOA_ODR_Addr, 13) //输出
#define PA14 BIT_ADDR(GPIOA_ODR_Addr, 14) //输出
#define PA15 BIT_ADDR(GPIOA_ODR_Addr, 15) //输出 #define PA0in BIT_ADDR(GPIOA_IDR_Addr, 0) //输入
#define PA1in BIT_ADDR(GPIOA_IDR_Addr, 1) //输入
#define PA2in BIT_ADDR(GPIOA_IDR_Addr, 2) //输入
#define PA3in BIT_ADDR(GPIOA_IDR_Addr, 3) //输入
#define PA4in BIT_ADDR(GPIOA_IDR_Addr, 4) //输入
#define PA5in BIT_ADDR(GPIOA_IDR_Addr, 5) //输入
#define PA6in BIT_ADDR(GPIOA_IDR_Addr, 6) //输入
#define PA7in BIT_ADDR(GPIOA_IDR_Addr, 7) //输入
#define PA8in BIT_ADDR(GPIOA_IDR_Addr, 8) //输入
#define PA9in BIT_ADDR(GPIOA_IDR_Addr, 9) //输入
#define PA10in BIT_ADDR(GPIOA_IDR_Addr, 10) //输入
#define PA11in BIT_ADDR(GPIOA_IDR_Addr, 11) //输入
#define PA12in BIT_ADDR(GPIOA_IDR_Addr, 12) //输入
#define PA13in BIT_ADDR(GPIOA_IDR_Addr, 13) //输入
#define PA14in BIT_ADDR(GPIOA_IDR_Addr, 14) //输入
#define PA15in BIT_ADDR(GPIOA_IDR_Addr, 15) //输入 //-----------------------------------------------------
#define PB0 BIT_ADDR(GPIOB_ODR_Addr, 0) //输出
#define PB1 BIT_ADDR(GPIOB_ODR_Addr, 1) //输出
#define PB2 BIT_ADDR(GPIOB_ODR_Addr, 2) //输出
#define PB3 BIT_ADDR(GPIOB_ODR_Addr, 3) //输出
#define PB4 BIT_ADDR(GPIOB_ODR_Addr, 4) //输出
#define PB5 BIT_ADDR(GPIOB_ODR_Addr, 5) //输出
#define PB6 BIT_ADDR(GPIOB_ODR_Addr, 6) //输出
#define PB7 BIT_ADDR(GPIOB_ODR_Addr, 7) //输出
#define PB8 BIT_ADDR(GPIOB_ODR_Addr, 8) //输出
#define PB9 BIT_ADDR(GPIOB_ODR_Addr, 9) //输出
#define PB10 BIT_ADDR(GPIOB_ODR_Addr, 10) //输出
#define PB11 BIT_ADDR(GPIOB_ODR_Addr, 11) //输出
#define PB12 BIT_ADDR(GPIOB_ODR_Addr, 12) //输出
#define PB13 BIT_ADDR(GPIOB_ODR_Addr, 13) //输出
#define PB14 BIT_ADDR(GPIOB_ODR_Addr, 14) //输出
#define PB15 BIT_ADDR(GPIOB_ODR_Addr, 15) //输出 #define PB0in BIT_ADDR(GPIOB_IDR_Addr, 0) //输入
#define PB1in BIT_ADDR(GPIOB_IDR_Addr, 1) //输入
#define PB2in BIT_ADDR(GPIOB_IDR_Addr, 2) //输入
#define PB3in BIT_ADDR(GPIOB_IDR_Addr, 3) //输入
#define PB4in BIT_ADDR(GPIOB_IDR_Addr, 4) //输入
#define PB5in BIT_ADDR(GPIOB_IDR_Addr, 5) //输入
#define PB6in BIT_ADDR(GPIOB_IDR_Addr, 6) //输入
#define PB7in BIT_ADDR(GPIOB_IDR_Addr, 7) //输入
#define PB8in BIT_ADDR(GPIOB_IDR_Addr, 8) //输入
#define PB9in BIT_ADDR(GPIOB_IDR_Addr, 9) //输入
#define PB10in BIT_ADDR(GPIOB_IDR_Addr, 10) //输入
#define PB11in BIT_ADDR(GPIOB_IDR_Addr, 11) //输入
#define PB12in BIT_ADDR(GPIOB_IDR_Addr, 12) //输入
#define PB13in BIT_ADDR(GPIOB_IDR_Addr, 13) //输入
#define PB14in BIT_ADDR(GPIOB_IDR_Addr, 14) //输入
#define PB15in BIT_ADDR(GPIOB_IDR_Addr, 15) //输入
//----------------------------------------------------
#define PC0 BIT_ADDR(GPIOC_ODR_Addr, 0) //输出
#define PC1 BIT_ADDR(GPIOC_ODR_Addr, 1) //输出
#define PC2 BIT_ADDR(GPIOC_ODR_Addr, 2) //输出
#define PC3 BIT_ADDR(GPIOC_ODR_Addr, 3) //输出
#define PC4 BIT_ADDR(GPIOC_ODR_Addr, 4) //输出
#define PC5 BIT_ADDR(GPIOC_ODR_Addr, 5) //输出
#define PC6 BIT_ADDR(GPIOC_ODR_Addr, 6) //输出
#define PC7 BIT_ADDR(GPIOC_ODR_Addr, 7) //输出
#define PC8 BIT_ADDR(GPIOC_ODR_Addr, 8) //输出
#define PC9 BIT_ADDR(GPIOC_ODR_Addr, 9) //输出
#define PC10 BIT_ADDR(GPIOC_ODR_Addr, 10) //输出
#define PC11 BIT_ADDR(GPIOC_ODR_Addr, 11) //输出
#define PC12 BIT_ADDR(GPIOC_ODR_Addr, 12) //输出
#define PC13 BIT_ADDR(GPIOC_ODR_Addr, 13) //输出
#define PC14 BIT_ADDR(GPIOC_ODR_Addr, 14) //输出
#define PC15 BIT_ADDR(GPIOC_ODR_Addr, 15) //输出 #define PC0in BIT_ADDR(GPIOC_IDR_Addr, 0) //输入
#define PC1in BIT_ADDR(GPIOC_IDR_Addr, 1) //输入
#define PC2in BIT_ADDR(GPIOC_IDR_Addr, 2) //输入
#define PC3in BIT_ADDR(GPIOC_IDR_Addr, 3) //输入
#define PC4in BIT_ADDR(GPIOC_IDR_Addr, 4) //输入
#define PC5in BIT_ADDR(GPIOC_IDR_Addr, 5) //输入
#define PC6in BIT_ADDR(GPIOC_IDR_Addr, 6) //输入
#define PC7in BIT_ADDR(GPIOC_IDR_Addr, 7) //输入
#define PC8in BIT_ADDR(GPIOC_IDR_Addr, 8) //输入
#define PC9in BIT_ADDR(GPIOC_IDR_Addr, 9) //输入
#define PC10in BIT_ADDR(GPIOC_IDR_Addr, 10) //输入
#define PC11in BIT_ADDR(GPIOC_IDR_Addr, 11) //输入
#define PC12in BIT_ADDR(GPIOC_IDR_Addr, 12) //输入
#define PC13in BIT_ADDR(GPIOC_IDR_Addr, 13) //输入
#define PC14in BIT_ADDR(GPIOC_IDR_Addr, 14) //输入
#define PC15in BIT_ADDR(GPIOC_IDR_Addr, 15) //输入 //----------------------------------------------------
#define PD0 BIT_ADDR(GPIOD_ODR_Addr, 0) //输出
#define PD1 BIT_ADDR(GPIOD_ODR_Addr, 1) //输出
#define PD2 BIT_ADDR(GPIOD_ODR_Addr, 2) //输出
#define PD3 BIT_ADDR(GPIOD_ODR_Addr, 3) //输出
#define PD4 BIT_ADDR(GPIOD_ODR_Addr, 4) //输出
#define PD5 BIT_ADDR(GPIOD_ODR_Addr, 5) //输出
#define PD6 BIT_ADDR(GPIOD_ODR_Addr, 6) //输出
#define PD7 BIT_ADDR(GPIOD_ODR_Addr, 7) //输出
#define PD8 BIT_ADDR(GPIOD_ODR_Addr, 8) //输出
#define PD9 BIT_ADDR(GPIOD_ODR_Addr, 9) //输出
#define PD10 BIT_ADDR(GPIOD_ODR_Addr, 10) //输出
#define PD11 BIT_ADDR(GPIOD_ODR_Addr, 11) //输出
#define PD12 BIT_ADDR(GPIOD_ODR_Addr, 12) //输出
#define PD13 BIT_ADDR(GPIOD_ODR_Addr, 13) //输出
#define PD14 BIT_ADDR(GPIOD_ODR_Addr, 14) //输出
#define PD15 BIT_ADDR(GPIOD_ODR_Addr, 15) //输出 #define PD0in BIT_ADDR(GPIOD_IDR_Addr, 0) //输入
#define PD1in BIT_ADDR(GPIOD_IDR_Addr, 1) //输入
#define PD2in BIT_ADDR(GPIOD_IDR_Addr, 2) //输入
#define PD3in BIT_ADDR(GPIOD_IDR_Addr, 3) //输入
#define PD4in BIT_ADDR(GPIOD_IDR_Addr, 4) //输入
#define PD5in BIT_ADDR(GPIOD_IDR_Addr, 5) //输入
#define PD6in BIT_ADDR(GPIOD_IDR_Addr, 6) //输入
#define PD7in BIT_ADDR(GPIOD_IDR_Addr, 7) //输入
#define PD8in BIT_ADDR(GPIOD_IDR_Addr, 8) //输入
#define PD9in BIT_ADDR(GPIOD_IDR_Addr, 9) //输入
#define PD10in BIT_ADDR(GPIOD_IDR_Addr, 10) //输入
#define PD11in BIT_ADDR(GPIOD_IDR_Addr, 11) //输入
#define PD12in BIT_ADDR(GPIOD_IDR_Addr, 12) //输入
#define PD13in BIT_ADDR(GPIOD_IDR_Addr, 13) //输入
#define PD14in BIT_ADDR(GPIOD_IDR_Addr, 14) //输入
#define PD15in BIT_ADDR(GPIOD_IDR_Addr, 15) //输入 //----------------------------------------------------
#define PE0 BIT_ADDR(GPIOE_ODR_Addr, 0) //输出
#define PE1 BIT_ADDR(GPIOE_ODR_Addr, 1) //输出
#define PE2 BIT_ADDR(GPIOE_ODR_Addr, 2) //输出
#define PE3 BIT_ADDR(GPIOE_ODR_Addr, 3) //输出
#define PE4 BIT_ADDR(GPIOE_ODR_Addr, 4) //输出
#define PE5 BIT_ADDR(GPIOE_ODR_Addr, 5) //输出
#define PE6 BIT_ADDR(GPIOE_ODR_Addr, 6) //输出
#define PE7 BIT_ADDR(GPIOE_ODR_Addr, 7) //输出
#define PE8 BIT_ADDR(GPIOE_ODR_Addr, 8) //输出
#define PE9 BIT_ADDR(GPIOE_ODR_Addr, 9) //输出
#define PE10 BIT_ADDR(GPIOE_ODR_Addr, 10) //输出
#define PE11 BIT_ADDR(GPIOE_ODR_Addr, 11) //输出
#define PE12 BIT_ADDR(GPIOE_ODR_Addr, 12) //输出
#define PE13 BIT_ADDR(GPIOE_ODR_Addr, 13) //输出
#define PE14 BIT_ADDR(GPIOE_ODR_Addr, 14) //输出
#define PE15 BIT_ADDR(GPIOE_ODR_Addr, 15) //输出 #define PE0in BIT_ADDR(GPIOE_IDR_Addr, 0) //输入
#define PE1in BIT_ADDR(GPIOE_IDR_Addr, 1) //输入
#define PE2in BIT_ADDR(GPIOE_IDR_Addr, 2) //输入
#define PE3in BIT_ADDR(GPIOE_IDR_Addr, 3) //输入
#define PE4in BIT_ADDR(GPIOE_IDR_Addr, 4) //输入
#define PE5in BIT_ADDR(GPIOE_IDR_Addr, 5) //输入
#define PE6in BIT_ADDR(GPIOE_IDR_Addr, 6) //输入
#define PE7in BIT_ADDR(GPIOE_IDR_Addr, 7) //输入
#define PE8in BIT_ADDR(GPIOE_IDR_Addr, 8) //输入
#define PE9in BIT_ADDR(GPIOE_IDR_Addr, 9) //输入
#define PE10in BIT_ADDR(GPIOE_IDR_Addr, 10) //输入
#define PE11in BIT_ADDR(GPIOE_IDR_Addr, 11) //输入
#define PE12in BIT_ADDR(GPIOE_IDR_Addr, 12) //输入
#define PE13in BIT_ADDR(GPIOE_IDR_Addr, 13) //输入
#define PE14in BIT_ADDR(GPIOE_IDR_Addr, 14) //输入
#define PE15in BIT_ADDR(GPIOE_IDR_Addr, 15) //输入 //举例: //输出 PA0=; PA1=; //输入 if(PB0==) ;//检测到低电平
像51一样操作STM32的IO(转)的更多相关文章
- 转载电子发烧友网---STM32的IO口灌入电流和输出驱动电流
刚开始学习一款单片机的时候一般都是从操作IO口开始的,所以我也一样,先是弄个流水灯. 刚开始我对STM32的认识不够,以为是跟51单片机类似,可以直接操作端口,可是LED灯却没反应,于是乎,仔细查看资 ...
- 51单片机I/O引脚IO口工作原理
51单片机I/O引脚IO口工作原理 一.51单片机管脚p0.p1.p2.p3口区别如下: 1.意思不同P0口作输出口用时,需加上拉电阻.P0口有复用功能.当对外部存储器进行读写操作时,P0口先是提供外 ...
- 51单片机和STM32单片机区别在那里
大部分朋友可能都知道51单片机和stm32单片机也知道一般入门会先学习51单片机在学习stm32单片机会简单一些,但是对于51单片机和stm32单片机的具体区别却不知道了,有些人觉得没必要,但是我个 ...
- STM32的IO口的8种配置
STM32的IO口的8种配置 1 STM32的输入输出管脚有以下8种可能的配置:(4输入+2输出+2复用输出) ① 浮空输入_IN_FLOATING ② 带上拉输入_IPU ③ 带下拉输入_IPD ④ ...
- 使用BSRR和BRR寄存器直接操作STM32的I/O端口
STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSRR和GPIOx_BRR寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置'1'或置'0'. GPIOx_BSRR的高16位中每 ...
- C# - openxml 操作excel - '“System.IO.Packaging.Package”在未被引用的程序集中定义'
在 CodeProject中,有位网友写的一篇基于OpenXML SDK 2.0对excel(大数据量)进行操作,其中,运行的时候,有如下错误: 类型“System.IO.Packaging.Pack ...
- STM32中IO口的8中工作模式
该文摘自:http://blog.csdn.net/kevinhg/article/details/17490273 一.推挽输出:可以输出高.低电平,连接数字器件:推挽结构一般是指两个三极管分别受两 ...
- 【C# IO 操作 】开篇 IO命名空间的解析
图片模板下载 System.IO命名空间类分为:文件.驱动 .目录.路径.流.比特率流的操作 驱动类:比较简单,所以就不区分静态和实例操作类,所有的操作合并在DriverInfo类中 路径类:比较简单 ...
- 关于STM32的IO口速率问题
输入模式可以不用配置速度,但是输出模式必须确定最大输出频率.当STM32的GPIO端口设置为输出模式时,有三种速度可以选择:2MHz.10MHz和50MHz,这个速度是指I/O口驱动电路的速度,是用来 ...
随机推荐
- bash和sh区别
在一般的linux系统当中(如redhat),使用sh调用执行脚本相当于打开了bash的POSIX标准模式(等效于bash的 --posix 参数),一般的,sh是bash的“子集”,不是子集的部分. ...
- 【转载】newInstance()和new()
newInstance()和new() 在Java开发特别是数据库开发中,经常会用到Class.forName( )这个方法.通过查询Java Documentation我们会发现使用Class.fo ...
- iOS 开发者应该知道的 ARM 结构
http://news.cnblogs.com/n/68903/ 我在写「NEON on iPhone 入门」的时候,曾以为读者已经比较了解 iOS设备的处理器知识.然而,看过网上的一些讨论,我才发现 ...
- android 图片拍照图片旋转的处理方式
第一种:String str=path; /** * 读取图片属性:旋转的角度 * * @param path * 图片绝对路径 * @return degree旋转的角度 */ private vo ...
- rabbitmq用于分布式系统
上文介绍了RabbitMQ在linux下的安装,这里就简单的介绍一下基于RabbitMQ的开发.RabbitMQ已经提供了一大坨材料. Java – http://www.RabbitMQ.com/j ...
- Reverse complement DNA
用法:python rev_comp.py input.fa out.fa 输入文件为 fasta 格式文件,若输入文件中序列的 header 有 '+' 或 '-' 号标记正负链,则带有 '+' 的 ...
- create a new table for the query results
http://stackoverflow.com/questions/2698401/how-to-store-mysql-query-results-in-another-table CREATE ...
- 这丫头也的还真清楚,但是跑不通呢,换3.0.3的mybatis也不行
http://java.dzone.com/articles/ibatis-mybatis-handling-joins http://mybatis.github.io/spring/mappers ...
- Android 手机应用开发经验 之 通过Socket(TCP/IP)与PC通讯
Android 是一个开源的手机操作系统平台,已经被非常多的开发者视作未来最有潜力的智能手机操作系统.而且,在很短的时间内就在Android Market上出现大量的第三方应用程序,供用户下载与使用, ...
- 基于ATmgea8单片机设计的加热控制系统(转)
源:http://blog.163.com/zhaojun_xf/blog/static/3005058020085102562729/ 1 引言 温度是工业生产中主要的被控参数之一,与之相关的各种温 ...