等待队列是内核中实现进程调度的一个十分重要的数据结构,其任务是维护一个链表,链表中每一个节点都是一个PCB(进程控制块),内核会将PCB挂在等待队列中的所有进程都调度为睡眠状态,直到某个唤醒的条件发生。应用层的阻塞IO与非阻塞IO的使用我已经在Linux I/O多路复用一文中讨论过了,本文主要讨论驱动中怎么实现对设备IO的阻塞与非阻塞读写。显然,实现这种与阻塞相关的机制要用到等待队列机制。本文的内核源码使用的是3.14.0版本

设备阻塞IO的实现

当我们读写设备文件的IO时,最终会回调驱动中相应的接口,而这些接口也会出现在读写设备进程的进程(内核)空间中,如果条件不满足,接口函数使进程进入睡眠状态,即使读写设备的用户进程进入了睡眠,也就是我们常说的发生了阻塞。In a word,读写设备文件阻塞的本质是驱动在驱动中实现对设备文件的阻塞,其读写的流程可概括如下:

1. 定义-初始化等待队列头

//定义等待队列头
wait_queue_head_t waitq_h;
//初始化,等待队列头
init_waitqueue_head(wait_queue_head_t *q);
//或
//定义并初始化等待队列头
DECLARE_WAIT_QUEUE_HEAD(waitq_name);

上面的几条选择中,最后一种会直接定义并初始化一个等待头,但是如果在模块内使用全局变量传参,用着并不方便,具体用哪种看需求。

我们可以追一下源码,看一下上面这几行都干了什么:

//include/linux/wait.h
35 struct __wait_queue_head {
36 spinlock_t lock;
37 struct list_head task_list;
38 };
39 typedef struct __wait_queue_head wait_queue_head_t;

wait_queue_head_t

--36-->这个队列用的自旋锁

--27-->将整个队列"串"在一起的纽带

然后我们看一下初始化的宏:

 55 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {                           \
56 .lock = __SPIN_LOCK_UNLOCKED(name.lock), \
57 .task_list = { &(name).task_list, &(name).task_list } }
58
59 #define DECLARE_WAIT_QUEUE_HEAD(name) \
60 wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)

DECLARE_WAIT_QUEUE_HEAD()

--60-->根据传入的字符串name,创建一个名为name的等待队列头

--57-->初始化上述task_list域,竟然没有用内核标准的初始化宏,无语。。。

2. 将本进程添加到等待队列

为等待队列添加事件,即进程进入睡眠状态直到condition为真才返回。_interruptible的版本版本表示睡眠可中断,_timeout版本表示超时版本,超时就会返回,这种命名规范在内核API中随处可见。

void wait_event(wait_queue_head_t *waitq_h,int condition);
void wait_event_interruptible(wait_queue_head_t *waitq_h,int condition);
void wait_event_timeout(wait_queue_head_t *waitq_h,int condition);
void wait_event_interruptible_timeout(wait_queue_head_t *waitq_h,int condition);

这可是等待队列的核心,我们来看一下

wait_event

   └── __wait_event

            └── ___wait_event

            ├── abort_exclusive_wait

            ├── finish_wait

            ├── prepare_to_wait_event

            └── ___wait_is_interruptible

244 #define wait_event(wq, condition)                                       \
245 do { \
246 if (condition) \
247 break; \
248 __wait_event(wq, condition); \
249 } while (0)

wait_event

--246-->如果condition为真,立即返回

--248-->否则调用__wait_event

194 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)        \
195 ({ \
206 for (;;) { \
207 long __int = prepare_to_wait_event(&wq, &__wait, state);\
208 \
209 if (condition) \
210 break; \
212 if (___wait_is_interruptible(state) && __int) { \
213 __ret = __int; \
214 if (exclusive) { \
215 abort_exclusive_wait(&wq, &__wait, \
216 state, NULL); \
217 goto __out; \
218 } \
219 break; \
220 } \
222 cmd; \
223 } \
224 finish_wait(&wq, &__wait); \
225 __out: __ret; \
226 })

___wait_event

--206-->死循环

--207-->进程进入睡眠

--209-->进程被wake_up唤醒,再次检查条件,如果条件为真,跳出循环,执行finish_wait(),wait_event()返回;如果醒来发现条件仍然不满足, 则执行下一个循环进入睡眠, 周而复始...

--212-->如果进程睡眠的方式是interruptible的,那么当中断来的时候也会abort_exclusive_wait被唤醒

--222-->如果上面两条都不满足,就会回调传入的schedule(),即继续睡眠

3. 无条件睡眠

wait_event是睡在一个条件上, 内核还提供了下面的API进行无条件的睡眠, 只要被wake_up了就会醒来

//在等待队列上睡眠
sleep_on(wait_queue_head_t *wqueue_h);
sleep_on_interruptible(wait_queue_head_t *wqueue_h);

4. 唤醒

条件不满足, wait_event就不会返回, 当前调用该接口的进程就会进入睡眠, 为了唤醒这个进程, 通常在另外一个接口或中断处理程序中满足条件并调用wake_up, 另外一个进程调用这个接口的时候,就会唤醒所有睡在这个条件上(这个等待队列头)的进程, 这个这样其实也实现了两个进程之间的"通信"

//唤醒等待的进程
void wake_up(wait_queue_t *wqueue);
void wake_up_interruptible(wait_queue_t *wqueue);

模板

struct wait_queue_head_t xj_waitq_h;
static ssize_t demo_read(struct file *filp, char __user *buf, size_t size, loff_t *offset)
{
if(!condition) //条件可以在中断处理函数或另外的接口中置位
wait_event_interruptible(&xj_waitq_h,condition);
}
static ssize_t demo_write(struct file *, const char __user *, size_t, loff_t *)
{
condition = 1;
wake_up(&xj_waitq_h);
}
static file_operations fops = {
.read = demo_read,
.write= demo_write,
};
static __init demo_init(void)
{
init_waitqueue_head(&xj_waitq_h);
}

IO多路复用的实现

对于普通的非阻塞IO,我们只需要在驱动中注册的read/write接口时不使用阻塞机制即可,这里我要讨论的是IO多路复用,即当驱动中的read/write并没有实现阻塞机制的时候,我们如何利用内核机制来在驱动中实现对IO多路复用的支持。下面这个就是我们要用的API

int poll(struct file *filep, poll_table *wait);
void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)

当应用层调用select/poll/epoll机制的时候,内核其实会遍历回调相关文件的驱动中的poll接口,通过每一个驱动的poll接口的返回值,来判断该文件IO是否有相应的事件发生,我们知道,这三种IO多路复用的机制的核心区别在于内核中管理监视文件的方式,分别是数组链表,但对于每一个驱动,回调的接口都是poll。

模板

struct wait_queue_head_t waitq_h;
static unsigned int demo_poll(struct file *filp, struct poll_table_struct *pts)
{
unsigned int mask = 0;
poll_wait(filp, &wwaitq_h, pts);
if(counter){
mask = (POLLIN | POLLRDNORM);
}
return mask;
} static struct file_operations fops = {
.owner = THIS_MODULE,
.poll = demo_poll,
};
static __init demo_init(void)
{
init_waitqueue_head(&xj_waitq_h);
}

Linux驱动技术(五) _设备阻塞/非阻塞读写的更多相关文章

  1. Linux驱动技术(五) _设备阻塞/非阻塞读写【转】

    转自:http://www.cnblogs.com/xiaojiang1025/p/6377925.html 等待队列是内核中实现进程调度的一个十分重要的数据结构,其任务是维护一个链表,链表中每一个节 ...

  2. Linux驱动技术(八) _并发控制技术

    为了实现对临界资源的有效管理,应用层的程序有原子变量,条件变量,信号量来控制并发,同样的问题也存在与驱动开发中,比如一个驱动同时被多个应用层程序调用,此时驱动中的全局变量会同时属于多个应用层进程的进程 ...

  3. 迅为4412开发板Linux驱动教程——总线_设备_驱动注册流程详解

    本文转自:http://www.topeetboard.com 视频下载地址: 驱动注册:http://pan.baidu.com/s/1i34HcDB 设备注册:http://pan.baidu.c ...

  4. 迅为4412开发板Linux驱动教程——总线_设备_驱动注冊流程具体解释

    视频下载地址: 驱动注冊:http://pan.baidu.com/s/1i34HcDB 设备注冊:http://pan.baidu.com/s/1kTlGkcR 总线_设备_驱动注冊流程具体解释 • ...

  5. Linux驱动技术(二) _访问I/O内存

    ARM是对内存空间和IO空间统一编址的,所以,通过读写SFR来控制硬件也就变成了通过读写相应的SFR地址来控制硬件.这部分地址也被称为I/O内存.x86中对I/O地址和内存地址是分开编址的,这样的IO ...

  6. Linux驱动技术(一) _内存申请

    先上基础,下图是Linux的内存映射模型,其中体现了Linux内存映射的几个特点: 每一个进程都有自己的进程空间,进程空间的0-3G是用户空间,3G-4G是内核空间 每个进程的用户空间不在同一个物理内 ...

  7. Linux驱动技术(七) _内核定时器与延迟工作

    内核定时器 软件上的定时器最终要依靠硬件时钟来实现,简单的说,内核会在时钟中断发生后检测各个注册到内核的定时器是否到期,如果到期,就回调相应的注册函数,将其作为中断底半部来执行.实际上,时钟中断处理程 ...

  8. Linux驱动技术(四) _异步通知技术

    异步通知的全称是"信号驱动的异步IO",通过"信号"的方式,放期望获取的资源可用时,驱动会主动通知指定的应用程序,和应用层的"信号"相对应, ...

  9. Linux驱动技术(六) _内核中断

    在硬件上,中断源可以通过中断控制器向CPU提交中断,进而引发中断处理程序的执行,不过这种硬件中断体系每一种CPU都不一样,而Linux作为操作系统,需要同时支持这些中断体系,如此一来,Linux中就提 ...

随机推荐

  1. Sping--Id, Name

    bean, id/name 都可以 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=& ...

  2. ISP和IAP

    ISP(在系统编程)是一种不依赖于单片机自身软件的程序下载方式,特点是不需要从电路板上取下单片机,通过某种方式使单片机进入ISP模式,开放编程接口,由其使用的计算机将新的程序代码写入到存储器内.我们平 ...

  3. iOS UICollectionView 长按移动cell

    ref:http://www.jianshu.com/p/31d07bf32d62 iOS 9之后: 示例如下 效果 前言: 看完你可以学到哪些呢? 就是文章标题那么多, 只有那么多. . 手残效果图 ...

  4. NavigationView学习笔记

    <android.support.v4.widget.DrawerLayout xmlns:android="http://schemas.android.com/apk/res/an ...

  5. leetcode day6

    [13]Roman to Integer Given a roman numeral, convert it to an integer. Input is guaranteed to be with ...

  6. JQuery基础知识(2)

    JQuery基础知识(2) JQuery滑动效果 1. JQuery slideDown(); 语法: $(selector).slideDown(speed,callback); 可选的 speed ...

  7. Beautiful Soup 定位指南

    Reference: http://blog.csdn.net/abclixu123/article/details/38502993 网页中有用的信息通常存在于网页中的文本或各种不同标签的属性值,为 ...

  8. PCA主成分分析方法

    PCA: Principal Components Analysis,主成分分析. 1.引入 在对任何训练集进行分类和回归处理之前,我们首先都需要提取原始数据的特征,然后将提取出的特征数据输入到相应的 ...

  9. linux下启动tomcat----Cannot find ./catalina.sh

    参考:http://dearseven.blog.163.com/blog/static/1005379222013764440253/ linux 下启动tomcat [root@test233 b ...

  10. jdk1.8中的for循环

    jdk1.8 从语法角度,感觉发生的变化还是蛮大的.在此记录一下. for 循环 public static void main(String[] args) { List<Animal> ...