对着满屏的游戏后台数据,需要快速了解数据特征,一种茫然无从下手的感觉?

本文在游戏后台数据中,如何通过R语言快速的了解游戏后台的数据特征,以及统计各个数据之间的相关系数,并通过相关图来发现其中相关系数较高的数据,从而通过R得到高相关系数之间的线性回归方程,最后通过矩阵散点图来初步发现数据中的一些规律解决相应的问题。附:本文需要安装corrgram和car包

具体代码如下:

library(corrgram)

library(car)

summary(data9)

cor(data9)

scatterplotMatrix(data9,spread=FALSE,main="时间,横幅展示,横幅点击,注册框点击,注册数之间关系")

corrgram(data9,order=TRUE,lower.panel=panel.shade,upper.panel=panel.pie,text.

panel=panel.txt,main="时间,横幅展示,横幅点击,注册框点击,注册数之间关系")

其中以某单机网的游戏广告投放后台数据为例

通过R中的summary和cor函数可以得到图一,可以快速了解数据的基本特征和相关系数。

为了方便快速展示数据之间的关联性,可以适当通过图形展示,提高工作效率,如图二,通过使用corrgram包中的corrgram()函数产生的相关图可以快速发现注册框点击和注册的相关系数最高,达到0.98。可以用R语言得到线性回归方程,从而发现从中的规律或者转化率:

myLm<-lm(M[negotiated=TRUE]~Z[negotiate=TRUE],data=data9)

myLm$coefficients

summary(myLm)

得到结果:(Intercept)requested[negotioted==TURE]

20.81 0.21

得到注册框点击Z和注册数M的基本线性回归方程:M=20.81+0.21*Z

而下图三,载入car包中的scatterplotMatrix()函数生成的矩阵散点图,可以快速了解数据之间的规律。仅下图标记2为例,表示流量和注册数的关系,即广告流量越大,注册数越多,则渠道正常。反之,流量越大,注册数保持不变或者下降的趋势,则渠道疲劳,即该渠道对广告产生视觉疲劳,可初步考虑放弃该渠道。同理,当渠道正常,下图标记1,即时间和注册数的关系成反比,则表示用户对素材疲劳,可适当切换新素材,保持点击新鲜度。

最后本文通过R语言产生的三个图,可以快速了解数据的基本特征,数据之间的相关性,以及数据之间的分布规律和趋势规律,从而基本达到快速了解游戏后台数据目的。

作者:心者,审稿:fish

转自:http://www.itongji.cn/article/012040302015.html

R语言&页游渠道分析(转)的更多相关文章

  1. R语言︱词典型情感分析文本操作技巧汇总(打标签、词典与数据匹配等)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:情感分析中对文本处理的数据的小技巧要 ...

  2. R语言——实验5-聚类分析

    针对课件中的例子自己实现k-means算法 调用R语言自带kmeans()对给定数据集表示的文档进行聚类. 给定数据集: a)         数据代表的是文本信息. b)        第一行代表词 ...

  3. R语言学习笔记:分析学生的考试成绩

    孩子上初中时拿到过全年级一次考试所有科目的考试成绩表,正好可以用于R语言的统计分析学习.为了不泄漏孩子的姓名,就用学号代替了,感兴趣可以下载测试数据进行练习. num class chn math e ...

  4. R语言学习 - 非参数法生存分析--转载

    生存分析指根据试验或调查得到的数据对生物或人的生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度大小的方法,也称生存率分析或存活率分析.常用于肿瘤等疾病的标志物筛选.疗效及预后的考 ...

  5. R语言︱情感分析—词典型代码实践(最基础)(一)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中 ...

  6. R语言︱情感分析—基于监督算法R语言实现(二)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...

  7. R语言:用简单的文本处理方法优化我们的读书体验

    博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html 前言 延续之前的用R语言读琅琊榜小说,继续讲一下利用R语言做一些简单的文本处理.分词的事情.其实 ...

  8. 大数据时代的精准数据挖掘——使用R语言

    老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一 ...

  9. R语言︱集合运算——小而美法则

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 集合运算的一般规则如下:    union(x ...

随机推荐

  1. windows下用cordova构建android app

    最近用到cordova打包apk,总结了下,写下来给大家分享. 一.前期准备工作: 1.安装node   6.2.0 *64 下载地址:链接:http://pan.baidu.com/s/1eS7Ts ...

  2. Windows下JIRA6.3.6安装、汉化、破解

    一.MySQL建库和建账号 1. mysql中创建数据库jiradb create database jiradb character set 'UTF8'; 2.创建数据库用户并赋于权限 creat ...

  3. 2017年陕西省网络空间安全技术大赛——种棵树吧——Writeup

    2017年陕西省网络空间安全技术大赛——种棵树吧——Writeup 下载下来的zip解压得到两个jpg图片,在Kali中使用binwalk查看文件类型如下图: 有两个发现: 1111.jpg 隐藏了一 ...

  4. Apache日志分割

    1.cronolog安装 采用 cronolog 工具进行 apache 日志分割 http://download.chinaunix.net/download.php?id=3457&Res ...

  5. 用C写一个web服务器(三) Linux下用GCC进行项目编译

    .container { margin-right: auto; margin-left: auto; padding-left: 15px; padding-right: 15px } .conta ...

  6. [编织消息框架][网络IO模型]aio

    asynchronous I/O (the POSIX aio_functions)—————异步IO模型最大的特点是 完成后发回通知. [编织消息框架][网络IO模型]NIO(select and ...

  7. iOS·官方文档译文框架源码注解

    导语

  8. 这可能是php世界中最好的日志库——monolog

    由于一些历史原因,php中并没有内建的日志接口,故长期以来也没一个功能完备并且应用广泛的日志库.在我的工作生涯中,如果系统需要记录一些应用日志的话,基本上就是封装一个日志类,然后把一些要记录的字段写入 ...

  9. js事件相关面试题

    说是面试题,其实也相当于是对js事件部分知识点的一个总结.简单内容一笔带过,了解详情我都给出了参考链接,都是之前写的一些相关文章.JavaScript本身没有事件模型,但是环境可以有. DOM:add ...

  10. Java IO最详解

    初学java,一直搞不懂java里面的io关系,在网上找了很多大多都是给个结构图草草描述也看的不是很懂.而且没有结合到java7 的最新技术,所以自己来整理一下,有错的话请指正,也希望大家提出宝贵意见 ...