The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题意:求四个数的和为0的情况有几种
题解:折半枚举+sort,,很重要的小技巧:upper_bound(a,a+n,s)-low_bound(a,a+n,s)表示a数组(已排序)里等于s的个数,
刚开始用if(all[lower_bound(all,all+n*n,-a[i]-b[j])-all]==-a[i]-b[j])处理wa了,发现原来是因为只算了一个相等的情况,要是有几个同时等于就漏了

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007 using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f; ll a[N],b[N],c[N],d[N];
ll all[N*N]; int main()
{
ios::sync_with_stdio(false);
cin.tie();
// cout<<setiosflags(ios::fixed)<<setprecision(2);
ll n;
while(cin>>n){
for(ll i=;i<n;i++)cin>>a[i]>>b[i]>>c[i]>>d[i];
for(ll i=;i<n;i++)
{
for(ll j=;j<n;j++)
{
all[i*n+j]=c[i]+d[j];
}
}
sort(all,all+n*n);
ll ans=;
for(ll i=;i<n;i++)
{
for(ll j=;j<n;j++)
{
ans+=upper_bound(all,all+n*n,-a[i]-b[j])-lower_bound(all,all+n*n,-a[i]-b[j]);
}
}
cout<<ans<<endl;
}
return ;
}

poj2785双向搜索的更多相关文章

  1. 折半枚举(双向搜索)poj27854 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 23757   Accep ...

  2. FZU 11月月赛D题:双向搜索+二分

    /* 双向搜索感觉是个不错的技巧啊 */ 题目大意: 有n的物品(n<=30),平均(两个人得到的物品差不能大于1)分给两个人,每个物品在每个人心目中的价值分别为(vi,wi) 问两人心目中的价 ...

  3. [CEOI2015 Day2]世界冰球锦标赛 (双向搜索)

    题目描述 [CEOI2015 Day2]世界冰球锦标赛译自 CEOI2015 Day2 T1「Ice Hockey World Championship」 今年的世界冰球锦标赛在捷克举行.Bobek ...

  4. TC-572-D1L2 (双向搜索+记忆化)

    solution: 这一题是比较难实现的双向搜索题:(字符串+双向搜索+hash记忆化) 我们可以先把K的前半部分枚举出来,并将得出的所有结果和题目给的n个数的每一个数的前半部分都比对一遍,得到它和每 ...

  5. NOI2001 方程的解数(双向搜索)

    solution 一道非常经典的双向搜索题目,先将前3个未知数枚举一遍得到方程的前半部分所有可能的值,取负存入第一个队列中再将后3个未知数枚举一遍,存入第二个队列中.这样我们只要匹配两个队列中相同的元 ...

  6. 2018.10.09 NOIP模拟 好数(双向搜索)

    传送门 直接双向搜索出两边可行解,然后把两边的可行解合并起来得出答案就行了. 注意合并的时候可以利用排序和单调性优化时间复杂度. 直接枚举合并是O(siza∗sizb)O(siza*sizb)O(si ...

  7. poj 3131 双向搜索+hash判重

    题意: 初始状态固定(朝上的全是W,空格位置输入给出),输入初始状态的空格位置,和最终状态朝上的位置,输出要多少步才能移动到,超过30步输出-1. 简析: 每一个格子有6种状态,分别是 0WRB, 1 ...

  8. CH2401 送礼物 双向搜索

    双向搜索:把前一半的可行状态搜出来,然后sort+unique,之后搜后一半时,结束时二分一下前一半的答案,拼出一个与W尽量接近的ans来更新 ps:距LYD说前一半取n/2+2时跑的最快...不知, ...

  9. POJ:3977-Subset(双向搜索)

    Subset Time Limit: 30000MS Memory Limit: 65536K Total Submissions: 5961 Accepted: 1129 Description G ...

随机推荐

  1. 当在浏览器地址栏里输入URL后会发生什么事情

    其实这个很多大神已经说的很多了.但是为了自己更好的理解,在自己所接触的层面上,重新对自己讲解一下.当然,这是站在一个前端开发者的角度上来看问题的. 说说一次HTTP完整事务的过程 输入URL 浏览器从 ...

  2. Ceres Solver for android

        最近开发中,需要对图片做一些处理与线性技术,这时就用到了Ceres Solver.如何把Ceres Solver集成到Android里呢? 官网给了一个解决方案,简洁明了:   Downloa ...

  3. cassandra高级操作之分页的java实现(有项目具体需求)

    接着上篇博客,我们来谈谈java操作cassandra分页,需要注意的是这个分页与我们平时所做的页面分页是不同的,具体有啥不同,大家耐着性子往下看. 上篇博客讲到了cassandra的分页,相信大家会 ...

  4. C#中如何给PDF添加可见的数字签名

    数字签名广泛用于保护PDF文档,可见数字签名在日常生活中是相当重要的.在这篇文章中我将与大家分享如何给PDF文件添加可见的数字签名. 首先我下载了一个由E-iceblue公司开发的免费版的PDF组件- ...

  5. C++ 虚函数相关,从头到尾捋一遍

    众所周知,C++虚函数是一大难点,也是面试过程中必考部分.此次,从虚函数的相关概念.虚函数表.纯虚函数.再到虚继承等等跟虚函数相关部分,做一个比较细致的整理和复习. 虚函数 OOP的核心思想是多态性( ...

  6. iptables初探

    一,前言 本来想起个名字叫做"小白都是怎么学习iptables的?"或者"你为什么还不了解iptables?"等等,就像简书上的头条文章,虽然被说成" ...

  7. 1.Redis 的安装

    一.Redis 介绍 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API. 作为Key-value型数据库,Red ...

  8. 如何使用CocoaPods

    如何使用CocoaPods 1.进入主目录下 cd /Users/HYYT/Desktop/支付功能/微信支付宝集成/支付宝微信支付集成 2.建立Podfile(配置文件) 2.1  输入:vim P ...

  9. 2017华为机试题--Floyd算法

    小K是X区域的销售经理,他平常常驻"5"城市,并且经常要到"1"."2"."3"."4"." ...

  10. Java 中的 String 类常用方法

    字符串广泛应用在Java编程中,在Java中字符串属于对象,String 类提供了许多用来处理字符串的方法,例如,获取字符串长度.对字符串进行截取.将字符串转换为大写或小写.字符串分割等. Strin ...