声明:

1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。

2. 我不确定的地方用了“应该”二字

首先,通俗说一下,CNN的存在是为了解决两个主要问题:

1. 权值太多。这个随便一篇博文都能解释

2. 语义理解。全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构。换句话说,打乱图像像素的输入顺序,结果不变。

然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的。这一点很简单也很重要:一般的卷积核如sobel算子、平滑算子等,都是人们根据数学知识得到的,比如求导,平均等等。所以一般的人工卷积核是不能放进卷积层的,这有悖于“学习”的概念。我们神经网络就是要自己学习卷积核的参数。来提取人们想不到甚至是无法理解的空间结构或特征。其他特征包括全局共享(一个卷积核滑动一整张图像),多核卷积(用一个卷积核只能提取一种空间结构或特征)。

最后,说一说TensorFlow中卷积的各种实现API(经常用到的):

import tensorflow as tf #自己去加,下面用tf代替tensorflow模块

1  tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, Name=None)

#输入:

# input: 一个张量。数据类型必须是float32或者float64。记住这个张量为四维[batch, in_height, in_width, in_channels],batch应该是指每次feed给网络的数据的个数,和mini-batch gradient descend有关;中间是长宽两项;最后是通道,灰度为1,RGB等为3

# filter: 输入的卷积核,也是四维[filter_height,filter_width,in_channels,channel_multiplier],前两维是尺寸比如3x3,2x2(注意是可以2x2的,这个涉及到非对称卷积核),第三维等于 in_channels,第四维是输出通道数,也就是你要输出的通道数,也就是你要使用的卷积核数

# strides: 一个长度是4的一维整数类型的数组,一般设为[1,1,1,1],注意第一个和第四个"1”固定不变(我试过改了结果不变,并且没有意义)中间的两个1,就是横向步长和纵向步长,意思是卷积核不一定是一步一步的滑动的。

# padding: 有两个值‘SAME’和'VALID',前者使得卷积后图像尺寸不变;后者尺寸变化

# use_cudnn_on_gpu: 在gpu上处理,tensorflow-gpu都默认设为了True

# data_format=None, Name=None 这两项请博友们自己查查,应该问题不大,Name应该与TensorFlow的图结构以及Session(会话)有关系;data_format的默认值应该为'NHWC',及张量维度的顺序应该是batch个数,高度,宽度和通道数。

可以说, tf.nn.conv2d就是处理的典型的卷积,例子和图示如下:

 input_data =tf.Variable(np.random.rand(10,9,9,3),dtype=np.float32)
filter_data = tf.Variable(np.random.rand(2,2,3,2),dtype=np.float32)
y = tf.nn.conv2d(input_data,filter_data,strides=[2,5,5,3],padding='SAME') #中间5,5大家自己设置一下,自己感受
y.shape

结果是 TensorShape([Dimension(10), Dimension(2), Dimension(2), Dimension(2)])

2  tf.nn.depthwise_conv2d(input, filter, strides, padding, rate=None, name=None, data_format=None)

与1的不同有有两点:

1. depthwise_conv2d将不同的卷积核独立地应用在in_channels的每个通道:我们一般对于三通道图像做卷积,都是先加权求和再做卷积(注意先加权求和再卷积与先卷积再加权求和结果一样),形象化描述就是我先把3通道压扁成1通道,在把它用x个卷积核提溜成x通道(或者我先把3通道用x个卷积核提溜成3x个通道,再分别压扁得到x通道); 而depthwise_conv2d就不加权求和了,直接卷积,所以最后输出通道的总数是in_channels*channel_multiplier

2. rate参数是一个1维向量,of size 2,由两个元素组成,这个参数与atrous convolution(孔卷积)和感受野有关,我下面会给出参考链接。注意, If it is greater than 1, then all values of strides must be 1.

3 tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, rate=None, name=None, data_format=None)

#特殊参数:

# depthwise_filter。一个张量,数据维度是四维[filter_height,filter_width,in_channels,channel_multiplier],如1中所述,但是卷积深度是1,如2中所述。

# pointwise_filter。一个张量,数据维度是四维[1,1,in_channels*channel_multiplier,out_channel]

tf.nn.separable_conv2d是利用几个分离的卷积核去做卷积。首先用depthwise_filter做卷积,效果与depthwise_conv2d相同,然后用1x1的卷积核pointwise_filter去做卷积。实例图如下:

这个理解困难就是最后一步,pointwise_filter是什么?需要说明的是,我只知道原理,我还不知道这样做的目的是什么。最后pointwise原理很简单,就和2中我说过的一样,我先把DM*in_channels(即in_channels*channel_multiplier)个通道压扁成1个通道,再用pointwise_filter这个1*1的卷积核提溜成out_channel个通道,所以pointwise_filter相当于out_channel个scalar。

例子如下:

 1 input_data = tf.Variable(np.random.rand(10,9,9,3),dtype=np.float32)
2 depthwise_filter = tf.Variable(np.random.rand(2,2,3,5),dtype=np.float32)
3 pointerwise_filter = tf.Variable(np.random.rand(1,1,15,20),dtype=np.float32)
4 #out_channels >= channel_multiplier * in_channels
5 y =tf.nn.separable_conv2d(input_data, depthwise_filter, pointerwise_filter, strides = [1,1,1,1], padding='SAME')
y.shape

结果是 TensorShape([Dimension(10), Dimension(9), Dimension(9), Dimension(20)])

参考资料:

《深度学习原理与Tensorflow实践》
《TensorFlow技术解析与实战》

Tensorflow(API MASTERT),也就是API Documentation

孔卷积或者扩张卷积

图的出处

CNN中的卷积核及TensorFlow中卷积的各种实现的更多相关文章

  1. TensorFlow中卷积

    CNN中的卷积核及TensorFlow中卷积的各种实现 声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了“ ...

  2. python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?

    Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量 ...

  3. tensorflow中的卷积和池化层(一)

    在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁. ...

  4. Tensorflow中使用CNN实现Mnist手写体识别

    本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示: 输入-卷积-pooling-卷积-pooling ...

  5. 在 TensorFlow 中实现文本分类的卷积神经网络

    在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...

  6. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  7. TensorFlow中的卷积函数

    前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性. 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可 ...

  8. 【深度学习】CNN 中 1x1 卷积核的作用

    [深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前 ...

  9. TensorFlow 中的卷积网络

    TensorFlow 中的卷积网络 是时候看一下 TensorFlow 中的卷积神经网络的例子了. 网络的结构跟经典的 CNNs 结构一样,是卷积层,最大池化层和全链接层的混合. 这里你看到的代码与你 ...

随机推荐

  1. 精华【分布式、微服务、云架构、dubbo+zookeeper+springmvc+mybatis+shiro+redis】分布式大型互联网企业架构!

    平台简介 Jeesz是一个分布式的框架,提供项目模块化.服务化.热插拔的思想,高度封装安全性的Java EE快速开发平台. Jeesz本身集成Dubbo服务管控.Zookeeper注册中心.Redis ...

  2. Linux Set Command

    1. set -e "Exit immediately if a simple command exits with a non-zero status." When this o ...

  3. Spring Cloud 客服端负载均衡 Ribbon

    一.简介   Spring Cloud Ribbon 是一个基于Http和TCP的客服端负载均衡工具,它是基于Netflix Ribbon实现的.它不像服务注册中心.配置中心.API网关那样独立部署, ...

  4. .net操作InI文件

    public class INI { public static string IniFileName = "";//路径 [DllImport("kernel32&qu ...

  5. (数字IC)低功耗设计入门(七)——门级电路低功耗设计优化(续)

    前面讲解了门级功耗的优化方法,包括静动态和总体的功耗.现在来记录一下门级层次(有点书也说是在系统级)常用的一种低功耗方法--电源门控. ①电源门控概述与原理 电源门控是指芯片中某个区域的供电电源被关掉 ...

  6. docker - 关于network的一些理解

    docker 提供给我们多种(4种)网络模式,我们可以根据自己的需求来使用.例如我们在一台主机(host)或者同一个docker engine上面运行continer的时候,我们就可以选择bridge ...

  7. python 获取utc时间转化为本地时间

    import datetime timenow = (datetime.datetime.utcnow() + datetime.timedelta(hours=8)) timetext = time ...

  8. MySql的学习笔记

    良好的理解sql语句: 列:理解可以运算的成变量 where: 理解成表达式,放在行中看是否成立 查出来的结果可以当成一张表理解,select 套用select综合查询:   五种查询 where g ...

  9. Java内存管理思维导图

    文 by / 林本托 Tips 做一个终身学习的人. 如果想要成为一名合格的 Java 程序员,就必须要涉及和掌握一些 Java 虚拟机的内部结构和特性.最近在读<深入理解Java 虚拟机> ...

  10. Dubbo源码分析系列---扩展点加载

    扩展点配置: 约定: 在扩展类的jar包内,放置扩展点配置文件:META-INF/dubbo/接口全限定名,内容为:配置名=扩展实现类全限定名,多个实现类用换行符分隔.(摘自dubbo文档) 示例: ...