题目链接

昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下

定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][j]表示最初在第i个位置上的机器人n次变换后位于第j个位置的情况数

最后求一下任意两个机器人不在相同位置的情况数之和(注意乘法原理和加法原理的应用)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; const int N=;
const LL mod=1e9+; LL hh[N][N]= {{,,,},
{,,,},
{,,,},
{,,,}
}; struct Mat
{
LL mat[N][N];
Mat()
{
memset(mat,,sizeof(mat));
}
LL* operator [](int x) //注意这种写法
{
return mat[x];
}
} A;
Mat Mut(Mat a,Mat b)
{
Mat c;
for(int k=; k<N; k++)
for(int i=; i<N; i++)
for(int j=; j<N; j++)
{
c[i][j]+=a[i][k]*b[k][j]%mod;
c[i][j]=c[i][j]%mod;
}
return c;
}
Mat Qpow(Mat a,LL n)
{
Mat c;
for(int i=; i<N; ++i)
c[i][i]=;
for(; n; n>>=)
{
if(n&) c=Mut(c,a);
a=Mut(a,a);
}
return c;
} void init_A()
{
for(int i=; i<N; i++)
for(int j=; j<N; j++)
A[i][j]=hh[i][j];
} int main()
{
LL n,Fn,Gn;
init_A();
while(cin>>n)
{
Mat Ans=Qpow(A,n);
LL sum=;
for(int i1=; i1<; i1++)
for(int i2=; i2<; i2++)
for(int i3=; i3<; i3++)
for(int i4=; i4<; i4++)
if(i1!=i2&&i1!=i3&&i1!=i4&&i2!=i3&&i2!=i4&&i3!=i4)
{
sum+=Ans[][i1]*Ans[][i2]%mod*Ans[][i3]%mod*Ans[][i4]%mod;
sum%=mod;
}
cout<<sum<<endl;
}
}

51nod_1122:机器人走方格 V4 (矩阵快速幂)的更多相关文章

  1. 51nod1122 机器人走方格 V4

    矩阵快速幂求出每个点走n步后到某个点的方案数.然后暴力枚举即可 #include<cstdio> #include<cstring> #include<cctype> ...

  2. 1122 机器人走方格 V4

    1122 机器人走方格 V4 基准时间限制:1 秒 空间限制:131072 KB  四个机器人a b c d,在2 * 2的方格里,一开始四个机器人分别站在4个格子上,每一步机器人可以往临近的一个格子 ...

  3. 51nod 1122 机器人走方格 V4 【矩阵快速幂】

    首先建立矩阵,给每个格子编号,然后在4*4的格子中把能一步走到的格子置为1,然后乘n次即可,这里要用到矩阵快速幂 #include<iostream> #include<cstdio ...

  4. 51nod 1122:机器人走方格 V4 (矩阵快速幂)

    题目链接 昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下 定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][ ...

  5. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  6. hdu 2157 从a点走到b点刚好k步的方案数是多少 (矩阵快速幂)

    n个点 m条路 询问T次 从a点走到b点刚好k步的方案数是多少 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存 ...

  7. hdu4686 Arc of Dream ——构造矩阵+快速幂

    link: http://acm.hdu.edu.cn/showproblem.php?pid=4686 构造出来的矩阵是这样的:根据题目的ai * bi = ……,可以发现 矩阵1 * 矩阵3 = ...

  8. 2014 Super Training #10 G Nostop --矩阵快速幂

    原题: FZU 2173 http://acm.fzu.edu.cn/problem.php?pid=2173 一开始看到这个题毫无头绪,根本没想到是矩阵快速幂,其实看见k那么大,就应该想到用快速幂什 ...

  9. HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

    2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...

随机推荐

  1. (转)Windows下tail命令工具(转)

    因为随笔无转载按钮,先说明原文地址是: Windows 下 tail 查看日志命令工具分享 使用方法: 下载后解压,把tail.exe 复制到 目录:C:\Windows\System32 下 文件下 ...

  2. 黑马程序员:3分钟带你读懂C/C++学习路线

    随着互联网及互联网+深入蓬勃的发展,经过40余年的时间洗礼,C/C++俨然已成为一门贵族语言,出色的性能使之成为高级语言中的性能王者.而在今天,它又扮演着什么样重要的角色呢?请往下看: 后端服务器,移 ...

  3. Java基础知识总结之IO流

    理解Java的IO流 流(Stream)的概念:程序与数据来源之间的桥梁 流的分类 按流的方向来分(从程序所在的内存的角度来看): 输入流:把外部输入读入当前程序所在内. 输出流:把当前程序所在内存的 ...

  4. VirtualBox的快照功能

    VirtualBox是非常好用的一个虚拟机软件,无论是性能还是易用性不比商用的Vmware差.VirtualBox最初是Sun公司的产品,由于Sun被Oracle收购,现在也归Oracle了.除了虚拟 ...

  5. 有关SQL模糊查询

    执行 数据库查询时,有完整查询和模糊查询之分. 一般模糊语句如下: SELECT 字段 FROM 表 WHERE 某字段 Like 条件 其中关于条件,SQL提供了四种匹配模式: 1,%:表示任意0个 ...

  6. Linux命令 查看文件内容

    cat [功能说明] 查看文件的内容  #cat本身是一个串接命令,把指定一个或多个源文件的内容,利用>符号重定向到目标文件中,如果不指定重定向文件,则默认在标准输出设备上显示.此时,可以利用c ...

  7. GA代码中的细节

    GA-BLX交叉-Gaussion变异 中的代码细节: 我写了一个GA的代码,在2005测试函数上一直不能得到与实验室其他同学类似的数量级的结果.现在参考其他同学的代码,发现至少有如下问题: 1.在交 ...

  8. SICP-1.7-递归函数

    递归函数 函数内部直接或间接的调用函数自身 将复杂问题简单化 例子程序 def sum_digits(n): """Return the sum of the digit ...

  9. VMWare、KVM、Virtualbox克隆或复制Linux虚拟机后eth0找不到的解决方案

    快速处理办法: cat /etc/sysconfig/network-scripts/ifcfg-eth0 sed -i '/UUID/d' /etc/sysconfig/network-script ...

  10. 《javascript高级程序设计》笔记三

    第三章 基本概念 任何语言的核心必然会描述这门语言最基本的工作原理.这部分内容对我们来说,读起来很乏味,甚至会产生困意,但这部分内容却是重要的!我有幸拜读<JavaScript高级程序设计> ...