深度学习框架-caffe安装-Mac OSX 10.12
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545; min-height: 14.0px }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC Semibold"; color: #454545 }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #e4af0a }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 }
span.s1 { font: 12.0px "Helvetica Neue" }
span.s2 { font: 12.0px ".PingFang SC" }
span.s3 { font: 12.0px ".PingFang SC"; color: #454545 }
span.s4 { font: 12.0px "Helvetica Neue"; color: #e4af0a }
span.s5 { font: 10.0px Menlo }
span.s6 { color: #e4af0a }
span.Apple-tab-span { white-space: pre }
ol.ol1 { list-style-type: decimal }
ul.ul1 { list-style-type: disc }
深度学习框架-caffe安装
[Mac OSX 10.12]
【参考资源】
1.英文原文:(使用GPU)
[http://hoondy.com/2015/04/03/how-to-install-caffe-on-mac-os-x-10-10-for-dummies-like-me/]
2.基于1的两篇中文博客:
[http://ylzhao.blogspot.kr/2015/04/mac-os-x-1010caffe.html]
[http://www.jianshu.com/p/8795b882ea67]
3.无GPU,仅使用CPU的情况下的配置
[http://blog.csdn.net/u014696921/article/details/52156552]
[http://www.phperz.com/article/16/1006/298567.html]
—————————————————————————————
【我的电脑配置】
系统:MacBook Pro OS X Sierra 版本10.12.2
CPU:2.7 GHz Intel Core i5
显卡:Intel Iris Graphics 6100 1536 MB
*如果显卡是NVIDIA的,可以使用GPU,需要安装cuda,cuda driver和cuDNN GPU库,并且在Makefile配置成使用GPU。参考资源中【1】【2】是有NVIDIA显卡的所以安装了cuda,cuda driver和cuDNN GPU库,最后的caffe的Makefile.config文件中配置成使用GPU。
*由于我电脑配置的不是NVIDIA显卡,所以不能使用cuda加速了,所以只能安装个CPU模式。可以忽略安装cuda,cuda driver和cuDNN的安装步骤,最后的caffe的Makefile.config文件中配置成仅使用CPU。
【详细安装步骤】
- Homebrew
- 根据 http://brew.sh/ 上面的说明安装Homebrew包管理
- Anaconda Python
- 从https://store.continuum.io/cshop/anaconda/下载和安装Anaconda Python包(其中包括Caffe框架用到的hdf5)
- export PATH=~/anaconda/bin:$PATH
- BLAS - Intel MKL
- 由于Mac OS X操作系统自带的BLAS库存在一些不稳定的问题,因此我选择安装Intel MKL库。如果你是在校大学生,可以使用学校邮箱从https://software.intel.com/en-us/qualify-for-free-software/student页面申请Intel Parallel Studio XE 2017安装包(后面不要忘记在Makefile.config中设置BLAS:=MKL)
- 确保在安装Intel Parallel XE时选择每一个组件(因为缺省情况下不会安装MKL组件)
- cd /opt/intel/mkl/lib/
- sudo ln -s . /opt/intel/mkl/lib/intel64(因为在编译Caffe时Caffe会从MKL的intel64目录中去搜索mkl的库,但是在安装MKL后,MKL的lib目录下并没有intel64这个目录,所以需要建立一个intel64目录到lib目录的软链接)
- 通过Homebrew安装依赖项
brew edit opencv 在自动打开的vim编辑器中将下面两行
args << "-DPYTHON#{py_ver}_LIBRARY=#{py_lib}/libpython2.7.#{dylib}"
args << "-DPYTHON#{py_ver}_INCLUDE_DIR=#{py_prefix}/include/python2.7"
替换为
args << "-DPYTHON_LIBRARY=#{py_prefix}/lib/libpython2.7.dylib"
args << "-DPYTHON_INCLUDE_DIR=#{py_prefix}/include/python2.7"
***vim中具体操作是:
i 从当前光标处进入插入模式,开始修改内容,esc 退出插入模式,:wq 保存修改并退出。
brew install --fresh -vd snappy leveldb gflags glog szip lmdb homebrew/science/opencv
brew install --build-from-source --with-python --fresh -vd protobuf
brew install --build-from-source --fresh -vd boost boost-python
- 从Github上面克隆Caffe的代码
git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
- 配置Makefile.config
- 设置BLAS := mkl(BLAS (使用intel mkl还是OpenBLAS))
- 取消USE_CUDNN := 1注释
- 检查并设置Python路径
*** 首先修改文件权限:chmod g+w Makefile.config
***打开文件进行修改:sudo vim Makefile.config ;按“i”键开始修改,修改 :将# CPU_ONLY = 1前面的#去掉( 由于我没有NVIDIA的显卡,就没有安装CUDA,因此需要打开这个选项) 并按“tab”键,(默认从tab处执行),设置BLAS := mkl,检查并设置python路径,修改结束后按esc键,键入“:wq”保存并退出;
***以下是我的Makefile.config中的所有配置:(可以先在命令行中验证一下自己的文件路径,一定要根据自己路径进行设置!)
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda
PYTHON_INCLUDE := $(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
$(ANACONDA_HOME)/include \
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
- 设置环境变量
- export DYLD_FALLBACK_LIBRARY_PATH=/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/composer_xe_2015.2.132/compiler/lib:/opt/intel/composer_xe_2015.2.132/mkl/lib
***必须手动查看自己的文件路径!根据自己的路径添加环境变量,我的路径如下:
export DYLD_FALLBACK_LIBRARY_PATH=$HOME/caffe/.build_release/lib:/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/compiler/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/mkl/lib/
- 编译Caffe
- make clean
- make all
- make test
- make runtest
- make pycaffe
- make distribute
***make all的时候注意库的链接路径,make runtest注意,会有这样的一个问题DYLD_FALLBACK_LIBRARY_PATH is cleared by the new System Integrity Protection ,所以要把System Integrity Protection禁止掉:具体操作:电脑重新开机同时按住command+r,进入恢复模式,然后打开终端,输入csrutil disable,就关闭SIP了,重新启动电脑即可。
深度学习框架-caffe安装-Mac OSX 10.12的更多相关文章
- 深度学习框架-caffe安装-环境[Mac OSX 10.12]
深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-ca ...
- 深度学习框架Caffe的编译安装
深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...
- XE6移动开发环境搭建之IOS篇(4):VMware9里安装Mac OSX 10.8(有图有真相)
网上能找到的关于Delphi XE系列的移动开发环境的相关文章甚少,本文尽量以详细的图文内容.傻瓜式的表达来告诉你想要的答案. 原创作品,请尊重作者劳动成果,转载请注明出处!!! 以下内容比较长,我们 ...
- VirtualBox虚拟机安装Mac OS 10.12
注:本文作者 (QQ:85805214) 本博主只是转载发布而已. VMware 安装Mac OS 方法 由于Virtual Box拷贝文件比较麻烦,有时候经常出现拷贝失败的情况,故使用VMware ...
- 虚拟机VirtualBox安装MAC OS 10.12图文教程
VirtualBox虚拟机安装Mac OS 10.12图文教程的准备 1.VirtualBox虚拟机 下载地址:https://www.virtualbox.org/ 特别提醒:推荐官方下载,安装Vi ...
- 2018VMware虚拟机安装Mac OS 10.12.1
说明:该篇博客是博主一字一码编写的,实属不易,请尊重原创,谢谢大家! 一.下载安装中所需的镜像文件以及补丁工具 Mac OS 10.12.1 Sierra (16B2555) 懒人版(下载地址):ht ...
- 贾扬清分享_深度学习框架caffe
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...
- vmware 12 安装 mac os 10.12正式版
1.首先下载安装vmware 12 pro ,将VT打开(虚拟功能,以前安装过虚拟机点的同学可忽略). 2.下载mac ox 10.12正式版镜像文件(cdr后缀). 3.下载Unlocker208( ...
- 深度学习框架caffe在ubuntu下的环境搭建
深度学习实验室服务器系统配置手册 目录: 一,显卡安装 二,U盘启动盘制作 三,系统安装 四,系统的基本配置 五,安装Nvidia驱动 六,安装cuda ...
随机推荐
- 【ES】ElasticSearch初体验之使用Java进行最基本的增删改查~
好久没写博文了, 最近项目中使用到了ElaticSearch相关的一些内容, 刚好自己也来做个总结. 现在自己也只能算得上入门, 总结下自己在工作中使用Java操作ES的一些小经验吧. 本文总共分为三 ...
- 终极锁实战:单JVM锁+分布式锁
目录 1.前言 2.单JVM锁 3.分布式锁 4.总结 =========正文分割线================= 1.前言 锁就像一把钥匙,需要加锁的代码就像一个房间.出现互斥操作的场景:多人同 ...
- 微信小程序-滚动消息通知
写在前面: 微信小程序学的不太多,做了一个简单的项目,回来很快时间内把在深圳两天的房租给赚回来了. 这次我主要想总结一下微信小程序实现上下滚动消息提醒,主要是利用swiper组件来实现,swiper组 ...
- 模板 mú bǎn
链式前向星 #include<string.h> #define MAX 10000 struct node { int to,nex,wei; }edge[MAX*+]; ],cnt; ...
- HPU--1280 Divisible
题目描述 给定一个很大的整数,我想知道它能否被9整除. 输入 有t组测试数据,每组数据给定一个整数N不存在前导0.(1 <= t <= 20,1 <= N <= 10^200) ...
- k-means算法概述
算法过程: 随机选取K个种子点 求所有点到种子点的距离,将点纳入距离最近的种子点群 所有点均被纳入群内后,将种子点移动到种子群中心 重复上述2.3过程,直至种子点没有移动 优缺点: 优点:容易实现 缺 ...
- 如何验证所做的AIX系统备份是否可用
--如何验证所做的AIX系统备份是否可用 ----------------------------------2013/11/15 系统备份(mksysb)的介质可以是磁带,也可以是CD和DVD.想要 ...
- 简单的用js打印乘法口诀表
<script type="text/javascript"> //乘法口诀表 for (var i = 1; i < 10; i++) { for (var j ...
- statement和preparedstatement的区别
在执行SQL命令时,我们有二种选择:可以使用PreparedStatement对象,也可以使用Statement对象.无论多少次地使用同一个SQL命令,PreparedStatement都只对它解析和 ...
- Spring(三)之自动装配、表达式
自动装配 自动装配(autowire)协作者 Spring IoC容器可以自动装配(autowire)相互协作bean之间的关联关系.因此,如果可能的话,可以自动让Spring通过检查BeanFact ...