5种方法推导Normal Equation
引言:
Normal Equation 是最基础的最小二乘方法。在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习。
Notations:
RSS(Residual Sum Squared error):残差平方和
β:参数列向量
X:N×p 矩阵,每行是输入的样本向量
y:标签列向量,即目标列向量
Method 1. 向量投影在特征纬度(Vector Projection onto the Column Space)
是一种最直观的理解: The optimization of linear regression is equivalent to finding the projection of vector y onto the column space of X. As the projection is denoted by Xβ, the optimal configuration of β is when the error vector y−Xβis orthogonal to the column space of X, that is
XT(y−Xβ)=0.(1)
Solving this gives:
β=(XTX)−1XTy.
Method 2. Direct Matrix Differentiation
通过重写S(β)为简单形式是一种最简明的方法
S(β)=(y−Xβ)T(y−Xβ)=yTy−βTXTy−yTXβ+βTXTXβ=yTy−2βTXTy+βTXTXβ.
差异化 S(β) w.r.t. β:
−2yTX+βT(XTX+(XTX)T)=−2yTX+2βTXTX=0,
Solving S(β) gives:
β=(XTX)−1XTy.
Method 3. Matrix Differentiation with Chain-rule
This is the simplest method for a lazy person, as it takes very little effort to reach the solution. The key is to apply the chain-rule:
∂S(β)∂β=∂(y−Xβ)T(y−Xβ)∂(y−Xβ)∂(y−Xβ)∂β=−2(y−Xβ)TX=0,
solving S(β) gives:
β=(XTX)−1XTy.
This method requires an understanding of matrix differentiation of the quadratic form: ∂xTWx∂x=xT(W+WT).
Method 4. Without Matrix Differentiation
We can rewrite S(β) as following:
S(β)=⟨β,β⟩−2⟨β,(XTX)−1XTy⟩+⟨(XTX)−1XTy,(XTX)−1XTy⟩+C,
where ⟨⋅,⋅⟩ is the inner product defined by
⟨x,y⟩=xT(XTX)y.
The idea is to rewrite S(β) into the form of S(β)=(x−a)2+b such that x can be solved exactly.
Method 5. Statistical Learning Theory
An alternative method to derive the normal equation arises from the statistical learning theory. The aim of this task is to minimize the expected prediction error given by:
EPE(β)=∫(y−xTβ)Pr(dx,dy),
where x stands for a column vector of random variables, y denotes the target random variable, and β denotes a column vector of parameters (Note the definitions are different from the notations before).
Differentiating EPE(β) w.r.t. β gives:
∂EPE(β)∂β=∫2(y−xTβ)(−1)xTPr(dx,dy).
Before we proceed, let’s check the dimensions to make sure the partial derivative is correct. EPE is the expected error: a 1×1 vector. β is a column vector that is N×1. According to the Jacobian in vector calculus, the resulting partial derivative should take the form
∂EPE∂β=(∂EPE∂β1,∂EPE∂β2,…,∂EPE∂βN),
which is a 1×N vector. Looking back at the right-hand side of the equation above, we find 2(y−xTβ)(−1) being a constant while xTbeing a row vector, resuling the same 1×Ndimension. Thus, we conclude the above partial derivative is correct. This derivative mirrors the relationship between the expected error and the way to adjust parameters so as to reduce the error. To understand why, imagine 2(y−xTβ)(−1) being the errors incurred by the current parameter configurations β and xT being the values of the input attributes. The resulting derivative equals to the error times the scales of each input attribute. Another way to make this point is: the contribution of error from each parameter βi has a monotonic relationship with the error 2(y−xTβ)(−1) as well as the scalar xT that was multiplied to each βi.
Now, let’s go back to the derivation. Because 2(y−xTβ)(−1) is 1×1, we can rewrite it with its transpose:
∂EPE(β)∂β=∫2(y−xTβ)T(−1)xTPr(dx,dy).
Solving ∂EPE(β)∂β=0 gives:
E[yTxT−βTxxT]=0E[βTxxT]=E[yTxT]E[xxTβ]=E[xy]β=E[xxT]−1E[xy].
5种方法推导Normal Equation的更多相关文章
- 机器学习入门:Linear Regression与Normal Equation -2017年8月23日22:11:50
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点: 前面我们通过Gradient Desce ...
- 正规方程 Normal Equation
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...
- machine learning (7)---normal equation相对于gradient descent而言求解linear regression问题的另一种方式
Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent 仅适用于linear regression问题的求解,对其 ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- Normal Equation
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta ...
- Normal Equation Algorithm
和梯度下降法一样,Normal Equation(正规方程法)算法也是一种线性回归算法(Linear Regression Algorithm).与梯度下降法通过一步步计算来逐步靠近最佳θ值不同,No ...
- normal equation(正规方程)
normal equation(正规方程) 正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: \[ \frac{\partial}{\partial\theta_j}J\left(\the ...
- YbSoftwareFactory 代码生成插件【二十五】:Razor视图中以全局方式调用后台方法输出页面代码的三种方法
上一篇介绍了 MVC中实现动态自定义路由 的实现,本篇将介绍Razor视图中以全局方式调用后台方法输出页面代码的三种方法. 框架最新的升级实现了一个页面部件功能,其实就是通过后台方法查询数据库内容,把 ...
- 去除inline-block元素间间距的N种方法
这篇文章发布于 2012年04月24日,星期二,22:38,归类于 css相关. 阅读 147771 次, 今日 52 次 by zhangxinxu from http://www.zhangxin ...
随机推荐
- Dynamics CRM 2015-Auto Save
Auto Save,顾名思义,就是不需要明确地点击Save按钮,自动保存.这个功能在创建CRM Organization的时候,默认是开启的. 需要注意的是: 1. Auto Save适用于Main ...
- WinForm——记住密码
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Runti ...
- iOS实现白板、画板功能,有趣的涂鸦工具,已封装,简单快捷使用
一.效果图: 二.选择颜色: 分[固定颜色模式]和[自由取模式]. 三.操作栏功能: 1.撤销:撤销上一步操作,可一直往上进行,直到全部清空. 2.清空:直接清除所有绘画. 3.橡皮擦:去除不要的绘 ...
- CentOS系统通过PXE实现批量无人值守安装
通过传统的方式安装和部署计算机时,都需要人工干预的方式完成安装.如果需要部署大量的类似功能的工作站或服务器,则需要耗费大量的时间.同时传统的安装方式,每台计算机都需要光驱设备及安装光盘等介质,会额外增 ...
- 微信小程序image组件binderror使用例子(对应html、js中的onerror)
官方文档 binderror HandleEvent 当错误发生时,发布到 AppService 的事件名,事件对象event.detail = {errMsg: 'something wrong' ...
- 浅谈-Lambda
Lambda简化了匿名委托的使用,让你让代码更加简洁,优雅.据说它是微软自c#1.0后新增的最重要的功能之一. 简介: lambda运算符:所有的lambda表达式都是用新的lambda运算符 &qu ...
- 《汇编语言程序设计》——仿windows计算器
<汇编语言程序设计> ——计算器程序设计 目录 一. 题目与目标 1. 题目 2. 学习目的 二. 分析与设计 1. 系统分析 2. ...
- 1305 Pairwise Sum and Divide
1305 Pairwise Sum and Divide 题目来源: HackerRank 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 有这样一段程序,fun会对 ...
- Eclipse中debug调试java代码一直报Source not found的解决办法
今天使用eclipse的debug调试代码,一直没法正常调试,一按F6就提示Source not found 根据提示发现可能是另一个项目影响了,所以把另一个项目Close Project,这次直接t ...
- Keepalived + HAProxy 搭建【第二篇】Keepalived 安装与配置
第一步:准备 1. 简介 本文搭建的是利用 Keepalived 实现 HAProxy 的热备方案,即两台主机上的 HAProxy 实例同时运行,其中全总较高的实例为 MASTER,MASTER出现异 ...