[hdu5632][BC#73 1002]Rikka with Array
点开BC发现今晚没比赛。。然后似乎上一场有数位DP?...(幸好我没去
一开始被BCDcode那题的思路带歪了。。后来发现得把n转成二进制才能搞TAT
题目大概是要求一种类似逆序对的鬼东西:
有一个长度为 n 的数组 A(下标为 1 到 n),A_i 为 i 的二进制表示中的1的个数,例如 A[1]=1, A[3]=2, A[10]=2。
现在勇太想知道数组 A 中满足 A[ i ]>A[ j ] 的数对 ( i , j )(1 ≤ i < j ≤ n) 的个数。
f[i][j]表示二进制下,i位的数有j个1的方案数(其实也就是组合数了
再预处理出g[i]表示二进制下,i位的数中,满足题意的数对的个数。
统计的时候用pre[i]表示 之前的数中,1的个数为i的数的个数。
其实有点像逆序对的那题(hdu5225)
统计的时候,一开始脑残写了发树状数组,然后复杂度比正解多一个log神奇的200+ms过了(中途还在纠结树状数组怎么写233)
吐槽了一下数据强度,然后发现自己傻逼了...弄个变量记录就行了TAT。。所以总的时间复杂度是O(10 * log²n)(logn是<1000的)
然后就46ms跑过去啦。。并列#1。。。(因为是新题...目前这题才30+人过... 实在没法再卡常了
#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define MOD(x) x-=x>=modd?modd:0
#define modd 998244353
using namespace std; int f[][],g[],nowsm[],pre[];
int two[];
int i,j,k,n,m,len,len1;
char s1[],s[]; inline void turn(){
len=;
register int i,l=;
while(l<=len1&&s1[l]){
s[++len]=s1[len1]&;
for(i=l;i<=len1;i++)
s1[i+]+=(s1[i]&)?:,s1[i]>>=;
if(!s1[l])l++;
}
} inline int get(){
register int i,pr=,sm;int ans=g[len-];
memset(pre,,sizeof(pre));
memcpy(pre,f[len-],len<<);
pr=;
for(i=len-;i;pr+=s[i--])
if(s[i]){
for(ans+=g[i-],MOD(ans),sm=,j=len;j>=pr;j--)
sm+=pre[j],MOD(sm);
for(j=,k=pr;j<=i;j++,k++)
sm-=pre[k],sm+=sm<?modd:,
ans=(ans+(ll)f[i-][j]*sm)%modd,
pre[k]+=f[i-][j],MOD(pre[k]);
}
for(i=len;i>pr;i--)ans+=pre[i],MOD(ans);
return ans;
}
int main(){
register int i,j;
for(i=;i<=;i++)f[i][]=;f[][]=;
for(i=,g[]=;i<=;i++){
g[i]=g[i-]<<,MOD(g[i]);
ll sm=;
for(j=;j<=i;j++)
sm+=f[i-][j],f[i][j]=f[i-][j]+f[i-][j-],MOD(f[i][j]);
for(j=;j<i;j++)
sm-=f[i-][j+],
g[i]=(g[i]+sm%modd*f[i-][j])%modd;
} int T;scanf("%d",&T);
while(T--){
scanf("%s",s1);len1=strlen(s1);for(i=len1;i;i--)s1[i]=s1[i-]-;
turn(),
printf("%d\n",get());
}
return ;
}
[hdu5632][BC#73 1002]Rikka with Array的更多相关文章
- 【hdu 5632】Rikka with Array
Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Ri ...
- CA Loves GCD (BC#78 1002) (hdu 5656)
CA Loves GCD Accepts: 135 Submissions: 586 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: ...
- BC#32 1002 hash
代码引用kuangbin大神的,膜拜 第一次见到hashmap和外挂,看来还有很多东西要学 维护前缀和sum[i]=a[0]-a[1]+a[2]-a[3]+…+(-1)^i*a[i] 枚举结尾i,然后 ...
- 【HDOJ】5632 Rikka with Array
1. 题目描述$A[i]$表示二级制表示的$i$的数字之和.求$1 \le i < j \le n$并且$A[i]>A[j]$的$(i,j)$的总对数. 2. 基本思路$n \le 10^ ...
- 【HDU】4908 (杭电 BC #3 1002题)BestCoder Sequence ——哈希
BestCoder Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- 73. Set Matrix Zeroes (Array)
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. Follow ...
- HDU 5632 Rikka with Array [想法题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5632 ------------------------------------------------ ...
- BestCoder Round #73 (div.2)
1001 Rikka with Chess ans = n / 2 + m / 2 1002 Rikka with Graph 题意:n + 1条边,问减去至少一条使剩下的图连通的方案数. 分析:原来 ...
- hdu5634 BestCoder Round #73 (div.1)
Rikka with Phi Accepts: 5 Submissions: 66 Time Limit: 16000/8000 MS (Java/Others) Memory Limit: ...
随机推荐
- iOS pch文件创建使用,和info.plis文件路径改变,路径的设置
一 路径报错: 二 pch创建设置: 一:如果要更改Info.plist与Prefix.pch文件实际路径,也就是实际文件的位置(不是在工程中的组织路径),需要到Build Settings中修改对应 ...
- 【NOIP模拟】从我背后出现
Description 给定n个点m条边的无向连通图,对于每条边求出强制选这条边后的最⼩⽣成树⼤⼩. \(n\leq 10^5,m\leq 2*10^5\) Input Format 第 1 行包含两 ...
- 用keras作CNN卷积网络书本分类(书本、非书本)
本文介绍如何使用keras作图片分类(2分类与多分类,其实就一个参数的区别...呵呵) 先来看看解决的问题:从一堆图片中分出是不是书本,也就是最终给图片标签上:“书本“.“非书本”,简单吧. 先来看看 ...
- Qt--自定义Delegate
这是Model/View中的最后一篇了,Qt官方显然弱化了Controller在MVC中的作用,提供了一个简化版的Delegate:甚至在Model/View框架的使用中,提供了默认的委托,让这个控制 ...
- 前端MVC Vue2学习总结(四)——条件渲染、列表渲染、事件处理器
一.条件渲染 1.1.v-if 在字符串模板中,如 Handlebars ,我们得像这样写一个条件块: <!-- Handlebars 模板 --> {{#if ok}} <h1&g ...
- 关于HTTP协议头域详解
HTTP1.1 请求头:消息头 Accept:text/html,image/* 告诉服务器,客户机支持的数据类型 Accept-Charset:ISO-8859-1 告诉服务器,客户机采用的编 ...
- 【转】完美解读Linux中文件系统的目录结构
一.前 言 接触Linux也有一段时间了,不过这几天在编译开源程序时,才发现自己对linux文件系统的目录结构了解的不够透彻,很多重要目录都说不清楚是用来干嘛的,于是在网上百度了一下这方面的介绍,根据 ...
- DBCC page 数据页 堆 底层数据分布大小计算
1.行的总大小: Row_Size = Fixed_Data_Size + Variable_Data_Size + Null_Bitmap + 4(4是指行标题开销) 开销定义: Fixed_Dat ...
- jBPM学习之部署流程定义
也许部署流程定义的方法有很多,这里选用的是用Java代码调用工作流引擎提供的部署服务API.在这之前,假设你的Eclipse已经安装好了GPD工作流画图工具,并且学会了画出最简单的HelloWorld ...
- 阿里云EMR集群初始化后的开发准备工作
前言:EMR的集群使用越来越普遍,但是每一次的集群释放到集群的重新创建,期间总有一些反复的工作需要查询与配置.为方便后续工作查阅,现在对集群初始化后的工作进行大概的梳理如下. ...