点开BC发现今晚没比赛。。然后似乎上一场有数位DP?...(幸好我没去

  一开始被BCDcode那题的思路带歪了。。后来发现得把n转成二进制才能搞TAT

  题目大概是要求一种类似逆序对的鬼东西:

    有一个长度为 n 的数组 A(下标为 1 到 n),A_i​​ 为 i 的二进制表示中的1的个数,例如 A[1]=1, A[3]=2, A[10]=2。

    现在勇太想知道数组 A 中满足 A[ i ]>A[ j ] 的数对 ( i , j )(1 ≤ i < j ≤ n) 的个数。


  f[i][j]表示二进制下,i位的数有j个1的方案数(其实也就是组合数了

  再预处理出g[i]表示二进制下,i位的数中,满足题意的数对的个数。

  统计的时候用pre[i]表示 之前的数中,1的个数为i的数的个数。

  其实有点像逆序对的那题(hdu5225)

  统计的时候,一开始脑残写了发树状数组,然后复杂度比正解多一个log神奇的200+ms过了(中途还在纠结树状数组怎么写233)

  吐槽了一下数据强度,然后发现自己傻逼了...弄个变量记录就行了TAT。。所以总的时间复杂度是O(10 * log²n)(logn是<1000的)

  然后就46ms跑过去啦。。并列#1。。。(因为是新题...目前这题才30+人过... 实在没法再卡常了

 #include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define MOD(x) x-=x>=modd?modd:0
#define modd 998244353
using namespace std; int f[][],g[],nowsm[],pre[];
int two[];
int i,j,k,n,m,len,len1;
char s1[],s[]; inline void turn(){
len=;
register int i,l=;
while(l<=len1&&s1[l]){
s[++len]=s1[len1]&;
for(i=l;i<=len1;i++)
s1[i+]+=(s1[i]&)?:,s1[i]>>=;
if(!s1[l])l++;
}
} inline int get(){
register int i,pr=,sm;int ans=g[len-];
memset(pre,,sizeof(pre));
memcpy(pre,f[len-],len<<);
pr=;
for(i=len-;i;pr+=s[i--])
if(s[i]){
for(ans+=g[i-],MOD(ans),sm=,j=len;j>=pr;j--)
sm+=pre[j],MOD(sm);
for(j=,k=pr;j<=i;j++,k++)
sm-=pre[k],sm+=sm<?modd:,
ans=(ans+(ll)f[i-][j]*sm)%modd,
pre[k]+=f[i-][j],MOD(pre[k]);
}
for(i=len;i>pr;i--)ans+=pre[i],MOD(ans);
return ans;
}
int main(){
register int i,j;
for(i=;i<=;i++)f[i][]=;f[][]=;
for(i=,g[]=;i<=;i++){
g[i]=g[i-]<<,MOD(g[i]);
ll sm=;
for(j=;j<=i;j++)
sm+=f[i-][j],f[i][j]=f[i-][j]+f[i-][j-],MOD(f[i][j]);
for(j=;j<i;j++)
sm-=f[i-][j+],
g[i]=(g[i]+sm%modd*f[i-][j])%modd;
} int T;scanf("%d",&T);
while(T--){
scanf("%s",s1);len1=strlen(s1);for(i=len1;i;i--)s1[i]=s1[i-]-;
turn(),
printf("%d\n",get());
}
return ;
}

[hdu5632][BC#73 1002]Rikka with Array的更多相关文章

  1. 【hdu 5632】Rikka with Array

    Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Ri ...

  2. CA Loves GCD (BC#78 1002) (hdu 5656)

    CA Loves GCD  Accepts: 135  Submissions: 586  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: ...

  3. BC#32 1002 hash

    代码引用kuangbin大神的,膜拜 第一次见到hashmap和外挂,看来还有很多东西要学 维护前缀和sum[i]=a[0]-a[1]+a[2]-a[3]+…+(-1)^i*a[i] 枚举结尾i,然后 ...

  4. 【HDOJ】5632 Rikka with Array

    1. 题目描述$A[i]$表示二级制表示的$i$的数字之和.求$1 \le i < j \le n$并且$A[i]>A[j]$的$(i,j)$的总对数. 2. 基本思路$n \le 10^ ...

  5. 【HDU】4908 (杭电 BC #3 1002题)BestCoder Sequence ——哈希

    BestCoder Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. 73. Set Matrix Zeroes (Array)

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. Follow ...

  7. HDU 5632 Rikka with Array [想法题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5632 ------------------------------------------------ ...

  8. BestCoder Round #73 (div.2)

    1001 Rikka with Chess ans = n / 2 + m / 2 1002 Rikka with Graph 题意:n + 1条边,问减去至少一条使剩下的图连通的方案数. 分析:原来 ...

  9. hdu5634 BestCoder Round #73 (div.1)

    Rikka with Phi  Accepts: 5  Submissions: 66  Time Limit: 16000/8000 MS (Java/Others)  Memory Limit: ...

随机推荐

  1. iOS pch文件创建使用,和info.plis文件路径改变,路径的设置

    一 路径报错: 二 pch创建设置: 一:如果要更改Info.plist与Prefix.pch文件实际路径,也就是实际文件的位置(不是在工程中的组织路径),需要到Build Settings中修改对应 ...

  2. 【NOIP模拟】从我背后出现

    Description 给定n个点m条边的无向连通图,对于每条边求出强制选这条边后的最⼩⽣成树⼤⼩. \(n\leq 10^5,m\leq 2*10^5\) Input Format 第 1 行包含两 ...

  3. 用keras作CNN卷积网络书本分类(书本、非书本)

    本文介绍如何使用keras作图片分类(2分类与多分类,其实就一个参数的区别...呵呵) 先来看看解决的问题:从一堆图片中分出是不是书本,也就是最终给图片标签上:“书本“.“非书本”,简单吧. 先来看看 ...

  4. Qt--自定义Delegate

    这是Model/View中的最后一篇了,Qt官方显然弱化了Controller在MVC中的作用,提供了一个简化版的Delegate:甚至在Model/View框架的使用中,提供了默认的委托,让这个控制 ...

  5. 前端MVC Vue2学习总结(四)——条件渲染、列表渲染、事件处理器

    一.条件渲染 1.1.v-if 在字符串模板中,如 Handlebars ,我们得像这样写一个条件块: <!-- Handlebars 模板 --> {{#if ok}} <h1&g ...

  6. 关于HTTP协议头域详解

    HTTP1.1 请求头:消息头  Accept:text/html,image/*  告诉服务器,客户机支持的数据类型 Accept-Charset:ISO-8859-1  告诉服务器,客户机采用的编 ...

  7. 【转】完美解读Linux中文件系统的目录结构

    一.前 言 接触Linux也有一段时间了,不过这几天在编译开源程序时,才发现自己对linux文件系统的目录结构了解的不够透彻,很多重要目录都说不清楚是用来干嘛的,于是在网上百度了一下这方面的介绍,根据 ...

  8. DBCC page 数据页 堆 底层数据分布大小计算

    1.行的总大小: Row_Size = Fixed_Data_Size + Variable_Data_Size + Null_Bitmap + 4(4是指行标题开销) 开销定义: Fixed_Dat ...

  9. jBPM学习之部署流程定义

    也许部署流程定义的方法有很多,这里选用的是用Java代码调用工作流引擎提供的部署服务API.在这之前,假设你的Eclipse已经安装好了GPD工作流画图工具,并且学会了画出最简单的HelloWorld ...

  10. 阿里云EMR集群初始化后的开发准备工作

              前言:EMR的集群使用越来越普遍,但是每一次的集群释放到集群的重新创建,期间总有一些反复的工作需要查询与配置.为方便后续工作查阅,现在对集群初始化后的工作进行大概的梳理如下.   ...