2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function(切比雪夫多项式+乘法逆元)
哈哈哈哈哈哈哈哈哈哈哈哈,终于把这道题补出来了_(:з」∠)_
来写题解啦。
_(:з」∠)_ _(:з」∠)_ _(:з」∠)_ _(:з」∠)_ _(:з」∠)_
哈哈哈哈哈哈,从9月16日打了这个题之后就一直在补这道题,今天终于a了,哈哈哈哈哈哈。
先把代码贴上,有时间再好好写题解,哈哈哈哈哈哈。ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙
代码,嘻嘻:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+;
const int mod=;
ll qpow(ll x, int q){
ll res = ;
while(q){
if(q%) res = res*x%mod;
x = x*x%mod;
q /= ;
}
return res;
}
int main(){
int n,m;
ll ans;
while(~scanf("%d%d",&n,&m)){
if(m>n)printf("0\n");
else if(n%==&&m%==||n%==&&m%==)printf("0\n");
else if(n==&&m==)printf("1\n");
else if(m==){
if(n%==)printf("0\n");
else if(n%==){
if((n/)%==)printf("998244352\n");
else printf("1\n");
}
}
else{
ans=;
for(int i=n-m+;i<=n+m-;i+=)
ans=(ans*i)%mod;
ans=(ans*n)%mod;
ll temp=;
for(int i=;i<=m;i++)
temp=(i*temp)%mod;
ll cnt;
cnt=qpow(temp,mod-);
//cout<<"aaaaaaaaaaaaaaaa"<<endl;
ans=ans*cnt%mod;
ans=((n-m)/)%==?ans:-ans;
ans=(ans+mod)%mod;
printf("%lld\n",ans%mod);
}
}
return ;
}
溜啦溜啦,哈哈哈哈哈哈哈哈。
今天来写题解啦。
1000ms
131072K
f(cos(x))=cos(n∗x) holds for all x.
Given two integers n and m, you need to calculate the coefficient of xm in f(x), modulo 998244353.
Input Format
Multiple test cases (no more than 100).
Each test case contains one line consisting of two integers n and m.
1≤n≤109,0≤m≤104.
Output Format
Output the answer in a single line for each test case.
样例输入
2 0
2 1
2 2
样例输出
998244352
0
2
题目来源
题目一开始没看懂什么意思,后来知道是切比雪夫多项式后,才明白题目要求的是什么。
在多项式中求xm的系数。
切比雪夫多项式, 自行百度。
切比雪夫多项式的公式:
公式1:
公式2:
切比雪夫多项式举例:
我是用公式2写的代码。
通过研究这个公式,可以发现:
1.当n和m奇偶性不同的时候,公式结果为0;
2.当m为0的时候可以发现,结果是有规律的。1,0,-1,0,4个一循环,就可以判断if(n%2==1)结果为0,
if((n/2)%2==1),结果为-1,if((n/2)%2==0)结果为1;
3.因为只有n和m同奇或者同偶,用公式计算,通过分析公式2,可以将公式简化。n!!是二阶乘的意思,就是n*(n-2)*(n-4)*(n-6)*...2;
可以将公式上下抵消一部分数,最后可以得到公式的主体部分为n*(n+m-2)*(n+m-2)*...(n-m+2)/m!;
然后就是乘法逆元,将m!逆元,乘法逆元,找度娘。
这个题写的好讨厌,老是小细节出问题,wa了好几好几发_(:з」∠)_
一开始没有将公式优化,也没有用逆元,直接就是超时_(:з」∠)_,改了无数次终于改对了,太菜了,QAQ。
代码解释:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+;
const int mod=;
ll qpow(ll x, int q){ //乘法逆元
ll res = ;
while(q){
if(q%) res = res*x%mod;
x = x*x%mod;
q /= ;
}
return res;
}
int main(){
int n,m;
ll ans;
while(~scanf("%d%d",&n,&m)){
if(m>n)printf("0\n"); //x的次方数最大为n次,超过了就不存在
else if(n%==&&m%==||n%==&&m%==)printf("0\n"); //n和m奇偶性不同的时候结果为0
else if(n==&&m==)printf("1\n"); //如果n和m为0,结果为1
else if(m==){ //如果m为0,就是有规律的
if(n%==)printf("0\n");//如果为奇数,就是0
else if(n%==){ //如果为偶数
if((n/)%==)printf("998244352\n");//除以2之后如果为奇数就是-1,(-1+mod)%mod结果就是这个数
else printf("1\n");//除以2之后如果为偶数就是1
}
}
else{ //其他的通过公式进行计算
ans=;
for(int i=n-m+;i<=n+m-;i+=) //优化之后只需要进行部分操作就可以
ans=(ans*i)%mod;//二阶乘
ans=(ans*n)%mod;//公式
ll temp=;
for(int i=;i<=m;i++)
temp=(i*temp)%mod;//m的阶乘
ll cnt;
cnt=qpow(temp,mod-);//m的阶乘的逆元
//cout<<"aaaaaaaaaaaaaaaa"<<endl;
ans=ans*cnt%mod;//将结果进行相乘
ans=((n-m)/)%==?ans:-ans;//判断正负号
ans=(ans+mod)%mod;
printf("%lld\n",ans%mod);
}
}
return ;
}
作为一个数学渣,做这种题目简直要命_(:з」∠)_
这个题也没用到什么很厉害的算法,就是数学题,大佬们肯定很easy的就过了_(:з」∠)_
加油_(:з」∠)_
2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function(切比雪夫多项式+乘法逆元)的更多相关文章
- 2017 ACM-ICPC 西安网络赛 F.Trig Function Chebyshev多项式
自己太菜,数学基础太差,这场比赛做的很糟糕.本来想吐槽出题人怎么都出很数学的题,现在回过头来想还是因为自己太垃圾,竞赛就是要多了解点东西. 找$f(cos(x))=cos(nx)$中$x^m$的系数模 ...
- HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛)
HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛) Panda Time Limit: 10000/4000 MS (Java/Others) Memory Limit: ...
- 【推导】计蒜客17119 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function
题意:给你n,m,让你求cos(nx)的展开式的(cos(x))^m项的系数. 更一般的式子是这样的:. 队友的代码: #include<cstdio> #include<algor ...
- 2014ACM/ICPC亚洲区西安站现场赛 F color(二项式反演)
题意:小球排成一排,从m种颜色中选取k种颜色给n个球上色,要求相邻的球的颜色不同,求可行的方案数,答案模1e9+7.T组数据,1<= n, m <= 1e9, 1 <= k < ...
- 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】
2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...
- 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)
摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...
- ICPC 2018 徐州赛区网络赛
ACM-ICPC 2018 徐州赛区网络赛 去年博客记录过这场比赛经历:该死的水题 一年过去了,不被水题卡了,但难题也没多做几道.水平微微有点长进. D. Easy Math 题意: ...
- 2016 ACM/ICPC亚洲区大连站-重现赛 解题报告
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5979 按AC顺序: I - Convex Time limit 1000 ms Memory li ...
- Skiing 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛H题(拓扑序求有向图最长路)
参考博客(感谢博主):http://blog.csdn.net/yo_bc/article/details/77917288 题意: 给定一个有向无环图,求该图的最长路. 思路: 由于是有向无环图,所 ...
随机推荐
- 栈stack(1):栈的数组实现
定义 栈(stack),是一个只允许在表尾端进行删除插入操作的线性表,是一种后进先出(LIFO,last in first out)的数据结构. 因此,对于栈来说,我们规定进行删除插入操作的表尾端称为 ...
- iOS动态性:动态添加属性的方法——关联(e.g. 向Category添加属性)
想到要如何为所有的对象增加实例变量吗?我们知道,使用Category可以很方便地为现有的类增加方法,但却无法直接增加实例变量.不过从Mac OS X v10.6开始,系统提供了Associative ...
- 通过C#来开启、关闭、重启Windows服务
通过C#开启服务需要这个C#程序有相应权限,比如服务的账户是Local System的就必须以管理员权限运行C#程序才能开启或关闭. 这里只写重启的方式(就是先关闭,后开启): // Security ...
- ROS初探:(一)ROS架构
一.ROS架构 ROS架构上分为三个层级: 计算图级(Computation Graph level):体现进程与系统的关系,描述系统怎么运行. 文件系统级(Filesystem level):组织构 ...
- HHVM源码剖析
一.前言 hhvm源码中充满了很多C++11的新特性,并且使用了各种设计模式如工厂,模板方法等,利用智能指针包裹指针,让delete没有肆意的出现 模板,继承,explicit,纯虚函数的出现令代码中 ...
- xamarin android menu的用法
在Android中的菜单有如下几种: OptionMenu:选项菜单,android中最常见的菜单,通过Menu键来调用 SubMenu:子菜单,android中点击子菜单将弹出一个显示子菜单项的悬浮 ...
- ArcGIS API for JavaScript 4.2学习笔记[8] 2D与3D视图同步
同一份数据不同视图查看可能用的比较少,因为3D视图放大很多后就和2D地图差不多了,畸变很小,用于超大范围的地图显示时有用,很多时候都是在平面地图上进行分析.查询.操作.教学需要可能会对这个有要求? 本 ...
- bzoj 3626: [LNOI2014]LCA
Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q ...
- 用js筛选数据排序
题目 参考以下示例代码,页面加载后,将提供的空气质量数据数组,按照某种逻辑(比如空气质量大于60)进行过滤筛选,最后将符合条件的数据按照一定的格式要求显示 <!DOCTYPE html> ...
- w 命令详解
作用: 用于显示已经登录系统的用户列表, 并显示用户正在执行的指令. 执行这个命令可得知目前登入系统的用户有哪些人, 以及他们正在执行的程序. 单独执行w 命令会显示所有的用户, 您也可指定用户名称 ...