DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络
一、深层神经网络
深层神经网络的符号与浅层的不同,记录如下:
- 用\(L\)表示层数,该神经网络\(L=4\)
- \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\)
- \(a^{[l]}\)表示第\(l\)层中的激活函数,\(a^{[l]}=g^{[l]}(z^{[l]})\)
二、前向和反向传播
1. 第\(l\)层的前向传播
输入为 \(a^{[l-1]}\)
输出为 \(a^{[l]}\), cache(\(z^{[l]}\))
矢量化表示:
\[Z^{[l]}=W^{[l]}·A^{[l-1]}+b^{[l]}\]
\[A^{[l]}=g^{[l]}(Z^{[l]})\]
2. 第\(l\)层的反向传播
输入为 \(da^{[l]}\)
输出为 \(da^{[l-1]},dW^{[l]},db^{[l]}\)
计算细节:
\[dz^{[l]}=da^{[l]}*g^{[l]'}(z^{[l]})\]
\[dw^{[l]}=dz^{[l]}*a^{[l-1]}\]
\[db^{[l]}=dz^{[l]}\]
\[da^{[l-1]}=w^{[l]^T}·dz^{[l]}\]
\[dz^{[l]}=w^{[l+1]^T}dz^{[l+1]}*g^{[l]'}(z^{[l]})\]
矢量化表示:
\[dZ^{[l]}=dA^{[l]}*g^{[l]'}(z^{[l]})\]
\[dw^{[l]}=\frac{1}{m}dz^{[l]}·A^{[l-1]^T}\]
\[db^{[l]}=\frac{1}{m}np.sum(dz^{[l]},axis=1,keepdim=True)\]
\[dA^{[l-1]}=w^{[l]^T}·dz^{[l]}\]
3. 总结
前向传播示例
反向传播
更清晰的表示:
三、深层网络中的前向传播
四、核对矩阵的维数
这节的内容主要是告诉我们如何知道自己在设计神经网络模型的时候各个参数的维度是否正确的方法。其实我自己在写代码的时候都得这样做才能有信心继续往下敲键盘,2333。
还是以这个神经网络为例,各层神经网络节点数为\(n^{[0]}=3,n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\)。
先确定\(W^{[1]}\)的维度:
已知\(Z^{[1]}=W^{[1]}·X+b^{[1]}\),很容易知道\(Z^{[1]}∈R^{5×1},X∈R^{3×1}\),\(b^{[1]}\)其实不用计算就知道其维度与\(Z\)是相同的,即\(b^{[1]}∈R^{5×1}\)。根据矩阵内积计算公式可以确定\(W^{[1]}∈R^{5×3}\)。
其他层同理,不再赘述。
五、为什么使用深层表示
为什么要使用深层表示?
下面就从直观上来理解深层神经网络。
如上图所示是一个人脸识别的过程,具体的实现步骤如下:
1.通过深层神经网络首先会选取一些边缘信息,例如脸形,眼框,总之是一些边框之类的信息(我自己的理解是之所以先找出边缘信息是为了将要观察的事物与周围环境分割开来),这也就是第一层的作用。
2.找到边缘信息后,开始放大,将信息聚合在一起。例如找到眼睛轮廓信息后,通过往上一层汇聚从而得到眼睛的信息;同理通过汇聚脸的轮廓信息得到脸颊信息等等
3.在第二步的基础上将各个局部信息(眼睛、眉毛……)汇聚成一张人脸,最终达到人脸识别的效果。
六、搭建深层神经网络块
上图表示单个神经元的前向和反向传播算法过程。
前向
输入\(a^{[l-1]}\),经过计算\(g^{[l]}(w^{[l]}·a^{[l-1]}+b^{[l]})\)得到\(a^{[l]}\)反向
计算\(da^{[l]}\),然后反向作为输入,经过一系列微分运算得到\(dw^{[l]},db^{[l]}\)(用来更新权重和偏差),以及上一层的\(da^{[l-1]}\)。
推广到整个深层神经网络就如下图所示:
祭上神图:
七、参数 vs 超参数
参数
常见的参数即为\(W^{[1]},b^{[1]},W^{[2]},b^{[2]}……\)- 超参数
- learning_rate: \(α\)
- iterations(迭代次数)
- hidden layer (隐藏层数量\(L\))
- hidden units (隐藏层神经元数量\(n^{[l]}\))
- 激活函数的选择
- minibatch size
- 几种正则化的方法
- momentum(动力、动量)后面会提到
八、这和大脑有什么关系
主要就是说神经网络和人的大脑运行机理貌似很相似,blabla。。。
DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络的更多相关文章
- Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化
目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...
- 【PyTorch深度学习】学习笔记之PyTorch与深度学习
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分 ...
- 学习笔记TF045:人工智能、深度学习、TensorFlow、比赛、公司
人工智能,用计算机实现人类智能.机器通过大量训练数据训练,程序不断自我学习.修正训练模型.模型本质,一堆参数,描述业务特点.机器学习和深度学习(结合深度神经网络). 传统计算机器下棋,贪婪算法,Alp ...
- Deeplearning.ai课程笔记-神经网络和深度学习
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数 ...
- Deep Learning.ai学习笔记_第一门课_神经网络和深度学习
目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络), ...
- [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...
- [DeeplearningAI笔记]神经网络与深度学习2.11_2.16神经网络基础(向量化)
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.11向量化 向量化是消除代码中显示for循环语句的艺术,在训练大数据集时,深度学习算法才变得高效,所以代码运行的非常快十分重要.所以在深度学 ...
- Deeplearning.ai课程笔记--汇总
从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还 ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [ ]AI为我们的家庭和办公室的个人设备供电 ...
随机推荐
- get和post请求及函数调用模式
1.get和post请求的应用场景? get: 1.get请求获取(查询)数据 2.请求url长度比较短 3.可以被缓存 4.请求url可以作为浏览器书签 5.可以被保存在浏览器记录中 6.请求参数在 ...
- ssh、scp免秘钥远程执行命令:expect
首先安装expect # yum -y install expect 命令格式 # ./expect IP COMM #expect是独立的工具,所以不能用sh来执行 1 2 3 4 5 6 7 ...
- 一步步搭建最简单oauth2.0认证和授权
oauth2.0 最早接触这个概念是在做微信订阅号开发.当时还被深深的绕进去,关于oauth2.0的解释网上有好多,而且都讲解的比较详细,下面给大家价格参考资料. http://owin.org/ h ...
- C#常见错误解决方法
1.能提供Visual Studio开发工具包吗? 解决方法: Visual Studio 2017开发环境下载地址: https://www.visualstudio.com/zh-hans/dow ...
- C# 通过url地址获取页面内容
using System.Net; using System.IO; HttpWebRequest request = (HttpWebRequest)WebRequest.Create(" ...
- Less的Extend_Less继承
Extend就相当于Java的继承,它允许一个选择器继承另一个选择器的样式.Extend有两种语法格式. 一种是: <selector>:extend(<parentSelector ...
- Mysql第一周
前言:好久不见,我又来写博客拉.上个月只写了几篇django-rest-framework的,而且还是根据官网的英文写的.干货不多,内心还是有点羞耻的…… 简单说下我11月去干嘛了.11月初美图给我发 ...
- 网站图片挂马检测及PHP与python的图片文件恶意代码检测对比
前言 周一一早网管收到来自阿里云的一堆警告,发现我们维护的一个网站下有数十个被挂马的文件.网管直接关了vsftpd,然后把警告导出邮件给我们. 取出部分大致如下: 服务器IP/名称 木马文件路径 更新 ...
- ACM HDU Bone Collector 01背包
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 这是做的第一道01背包的题目.题目的大意是有n个物品,体积为v的背包.不断的放入物品,当然物品有 ...
- SPOJ SERGRID - Grid BFS
SERGRID - Grid no tags You are on an nxm grid where each square on the grid has a digit on it. From ...