DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络
一、深层神经网络
深层神经网络的符号与浅层的不同,记录如下:
- 用\(L\)表示层数,该神经网络\(L=4\)
- \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\)
- \(a^{[l]}\)表示第\(l\)层中的激活函数,\(a^{[l]}=g^{[l]}(z^{[l]})\)
二、前向和反向传播
1. 第\(l\)层的前向传播
输入为 \(a^{[l-1]}\)
输出为 \(a^{[l]}\), cache(\(z^{[l]}\))
矢量化表示:
\[Z^{[l]}=W^{[l]}·A^{[l-1]}+b^{[l]}\]
\[A^{[l]}=g^{[l]}(Z^{[l]})\]
2. 第\(l\)层的反向传播
输入为 \(da^{[l]}\)
输出为 \(da^{[l-1]},dW^{[l]},db^{[l]}\)
计算细节:
\[dz^{[l]}=da^{[l]}*g^{[l]'}(z^{[l]})\]
\[dw^{[l]}=dz^{[l]}*a^{[l-1]}\]
\[db^{[l]}=dz^{[l]}\]
\[da^{[l-1]}=w^{[l]^T}·dz^{[l]}\]
\[dz^{[l]}=w^{[l+1]^T}dz^{[l+1]}*g^{[l]'}(z^{[l]})\]
矢量化表示:
\[dZ^{[l]}=dA^{[l]}*g^{[l]'}(z^{[l]})\]
\[dw^{[l]}=\frac{1}{m}dz^{[l]}·A^{[l-1]^T}\]
\[db^{[l]}=\frac{1}{m}np.sum(dz^{[l]},axis=1,keepdim=True)\]
\[dA^{[l-1]}=w^{[l]^T}·dz^{[l]}\]
3. 总结
前向传播示例
反向传播
更清晰的表示:
三、深层网络中的前向传播
四、核对矩阵的维数
这节的内容主要是告诉我们如何知道自己在设计神经网络模型的时候各个参数的维度是否正确的方法。其实我自己在写代码的时候都得这样做才能有信心继续往下敲键盘,2333。
还是以这个神经网络为例,各层神经网络节点数为\(n^{[0]}=3,n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\)。
先确定\(W^{[1]}\)的维度:
已知\(Z^{[1]}=W^{[1]}·X+b^{[1]}\),很容易知道\(Z^{[1]}∈R^{5×1},X∈R^{3×1}\),\(b^{[1]}\)其实不用计算就知道其维度与\(Z\)是相同的,即\(b^{[1]}∈R^{5×1}\)。根据矩阵内积计算公式可以确定\(W^{[1]}∈R^{5×3}\)。
其他层同理,不再赘述。
五、为什么使用深层表示
为什么要使用深层表示?
下面就从直观上来理解深层神经网络。
如上图所示是一个人脸识别的过程,具体的实现步骤如下:
1.通过深层神经网络首先会选取一些边缘信息,例如脸形,眼框,总之是一些边框之类的信息(我自己的理解是之所以先找出边缘信息是为了将要观察的事物与周围环境分割开来),这也就是第一层的作用。
2.找到边缘信息后,开始放大,将信息聚合在一起。例如找到眼睛轮廓信息后,通过往上一层汇聚从而得到眼睛的信息;同理通过汇聚脸的轮廓信息得到脸颊信息等等
3.在第二步的基础上将各个局部信息(眼睛、眉毛……)汇聚成一张人脸,最终达到人脸识别的效果。
六、搭建深层神经网络块
上图表示单个神经元的前向和反向传播算法过程。
前向
输入\(a^{[l-1]}\),经过计算\(g^{[l]}(w^{[l]}·a^{[l-1]}+b^{[l]})\)得到\(a^{[l]}\)反向
计算\(da^{[l]}\),然后反向作为输入,经过一系列微分运算得到\(dw^{[l]},db^{[l]}\)(用来更新权重和偏差),以及上一层的\(da^{[l-1]}\)。
推广到整个深层神经网络就如下图所示:
祭上神图:
七、参数 vs 超参数
参数
常见的参数即为\(W^{[1]},b^{[1]},W^{[2]},b^{[2]}……\)- 超参数
- learning_rate: \(α\)
- iterations(迭代次数)
- hidden layer (隐藏层数量\(L\))
- hidden units (隐藏层神经元数量\(n^{[l]}\))
- 激活函数的选择
- minibatch size
- 几种正则化的方法
- momentum(动力、动量)后面会提到
八、这和大脑有什么关系
主要就是说神经网络和人的大脑运行机理貌似很相似,blabla。。。
DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络的更多相关文章
- Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化
目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...
- 【PyTorch深度学习】学习笔记之PyTorch与深度学习
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分 ...
- 学习笔记TF045:人工智能、深度学习、TensorFlow、比赛、公司
人工智能,用计算机实现人类智能.机器通过大量训练数据训练,程序不断自我学习.修正训练模型.模型本质,一堆参数,描述业务特点.机器学习和深度学习(结合深度神经网络). 传统计算机器下棋,贪婪算法,Alp ...
- Deeplearning.ai课程笔记-神经网络和深度学习
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数 ...
- Deep Learning.ai学习笔记_第一门课_神经网络和深度学习
目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络), ...
- [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...
- [DeeplearningAI笔记]神经网络与深度学习2.11_2.16神经网络基础(向量化)
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.11向量化 向量化是消除代码中显示for循环语句的艺术,在训练大数据集时,深度学习算法才变得高效,所以代码运行的非常快十分重要.所以在深度学 ...
- Deeplearning.ai课程笔记--汇总
从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还 ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [ ]AI为我们的家庭和办公室的个人设备供电 ...
随机推荐
- openGL光源概念
1. 光照模型 环境光——经过多次反射而来的光称为环境光,无法确定其最初的方向,但当特定的光源关闭后,它们将消失. 全局环境光——每个光源都能对场景提供环境光.此外,还有一个环境光,它不来自 ...
- 一个页面tab标签切换,都有scroll事件的解决办法
当前页有多个tab,如果都有scroll事件, 先解绑$(window).off('scroll') 再执行scroll就不可以了,多个标签就不会互相干扰: 给你们个例子: //标签切换 $(' ...
- markdown 字体颜色
Markdown是一种可以使用普通文本编辑器编写的标记语言,通过类似HTML的标记语法,它可以使普通文本内容具有一定的格式.但是它本身是不支持修改字体.字号与颜色等功能的! CSDN-markd ...
- JSP4(内置对象)
一.超级链接传值问题传值: <a href="href1.jsp?id=1&name=pkd&age=40">This is my JSP page. ...
- Mysql--数据的操作
1.插入数据 1.1 插入完整数据记录 语法1: 例子: 语法2: 例子: 1.2 插入数据记录一部分 语法: 例子: 1.3 插入多条数据记录 1.插入多条完整的数据 语法: 例子: 插入多条部 ...
- 对java多线程里Synchronized的思考
Synchronized这个关键字在多线程里经常会出现,哪怕做到架构师级别了,在考虑并发分流时,也经常会用到它.在本文里,将通过一些代码实验来验证它究竟是"锁"什么. 在启动多个线 ...
- 如何在README.md文件中添加图片
原文链接:https://www.cnblogs.com/hongmaju/p/6873720.html 1.在github上的仓库建立一个存放图片的文件夹,文件夹名字随意.如:img-folder ...
- Python函数篇(二)之递归函数、匿名函数及高阶函数
1.全局变量和局部变量 一般定义在程序的最开始的变量称为函数变量,在子程序中定义的变量称为局部变量,可以简单的理解为,无缩进的为全局变量,有缩进的是局部变量,全局变量的作用域是整个程序,而局部变量的作 ...
- mybatis运行时拦截ParameterHandler注入参数
在实现多租户系统时,每个租户下的用户,角色,权限,菜单都是独立的,每张表里都有租户Id字段 (tenantId),每次做数据库操作的时候都需要带上这个字段,很烦. 现在的需求就是在mybatis向sq ...
- 使用python
最近看视频学习,老师布置了个作业,关于如何使用python将多个excel进行合并,老师写的代码我感觉比较复杂,下面是我自己改良之后较简单的方式. 实现这个功能主要有两种方法,一种是用xlwd,xls ...