K-D Tree
这篇随笔是对Wikipedia上 k-d tree 词条的摘录, 我认为对该词条解释相当生动详细, 是不可多得的好文.
Overview
A $k$-d tree (short for $k$-dimensional tree) is a binary space-partitioning tree for organizing points in a $k$-dimensional space. $k$-d trees are a useful data structure for searches involving a multidimensional search key.
Construction
The canonical method of $k$-d tree construction has the following constraints:
- As one moves down the tree, one cycles through the axes used to select the splitting planes.
- Points are inserted by selecting the median of the points being put into the subtree, with respect to their coordinates in the axis being used to create the splitting plane.
This method leads to a balanced $k$-d tree, in which each leaf node is approximately the same distance from the root. However, balanced trees are not necessarily optimal for all applications.
Nearest Neighboring Search
Terms:
- the split dimensions
- the splitting (hyper)plane
- "current best"
The **nearest neighbour ** (NN) search algorithm aims to find the point in the tree that is nearest to a given point. This search can be done efficiently by using the tree properties to quickly eliminate large portions of the search space.
Searching for a nearest neighbour in a $k$-d tree proceeds as follows:
- Starting with the root node, the algorithm moves down the tree recursively.
- Once the algorithm reaches a leaf node, it saves that node point as "current best"
- The algorithm unwinds the recursion of the tree, performing the following steps at each node:
- If the current node is closer than the current best, then it becomes the current best.
- The algorithm checks whether there could be any points on the other side of the splitting plane that are closer to the search point than the current best. In concept, this is done by intersecting the splitting hyperplane with a hypersphere around the the search point that has a radius equal to the current nearest distance. Since the hyperplanes are all axis-aligned this is implemented as a simple comparison to see whether the distance between the splitting coordinate of the search point and current node is less than the distance (overall coordinates) from the search point to the current best.
- If the hypersphere crosses the plane, there could be nearer points on the other side of the plane, so the algorithm must move down the other branch of the tree from the current node looking for closer points, following the same recursive process as the entire search.
- If the hypersphere doesn't intersect the splitting plane, then the algorithm continues walking up the tree, and the entire branch on the other side of that node is eliminated.
Generally, the algorithm uses squared distances for comparison to avoid computing square roots. Additionally, it can save computation by holding the squared current best distance in a variable for computation.
The algorithm can be extended in several ways by simple modifications. If can provide the $k $ nearest neighbors to a point by maintaining $k$ current bests instead of just one. A branch is only eliminated when $k$ points have been found and the branch cannot have points closer than any of the $k$ current bests.
Implementation
$k$ 近临 ($k$NN)
#include <bits/stdc++.h>
#define lson id<<1
#define rson id<<1|1
#define sqr(x) (x)*(x)
using namespace std;
using LL=long long;
const int N=5e4+5;
// K-D tree: a special case of binary space partitioning trees
int DIM, idx;
struct Node{
int key[5];
bool operator<(const Node &rhs)const{
return key[idx]<rhs.key[idx];
}
void read(){
for(int i=0; i<DIM; i++)
scanf("%d", key+i);
}
LL dis2(const Node &rhs)const{
LL res=0;
for(int i=0; i<DIM; i++)
res+=sqr(key[i]-rhs.key[i]);
return res;
}
void out(){
for(int i=0; i<DIM; i++)
printf("%d%c", key[i], i==DIM-1?'\n':' ');
}
}p[N];
Node a[N<<2]; // K-D tree
bool f[N<<2];
// [l, r)
void build(int id, int l, int r, int dep)
{
if(l==r) return; // error-prone
f[id]=true, f[lson]=f[rson]=false;
// select axis based on depth so that axis cycles through all valid values
idx=dep%DIM;
int mid=l+r>>1;
// sort point list and choose median as pivot element
nth_element(p+l, p+mid, p+r);
a[id]=p[mid];
build(lson, l, mid, dep+1);
build(rson, mid+1, r, dep+1);
}
using P=pair<LL,Node>;
priority_queue<P> que;
// multidimensional search key
void query(const Node &p, int id, int m, int dep){
int dim=dep%DIM;
int x=lson, y=rson;
// left: <, right >=
if(p.key[dim]>=a[id].key[dim])
swap(x, y);
if(f[x]) query(p, x, m, dep+1);
P cur{p.dis2(a[id]), a[id]};
if(que.size()<m){
que.push(cur);
}
else if(cur.first<que.top().first){
que.pop();
que.push(cur);
}
if(f[y] && sqr(a[id].key[dim]-p.key[dim])<que.top().first)
query(p, y, m, dep+1);
}
说明:
bool
数组f[]
, 表示一个完全二叉树中的某个节点是否存在, 也可不用完全二叉树的表示法, 而用两个数组lson[]
和rson[]
表示, 这样的好处还有: 节省空间, 数组可以只开到节点数的2倍.- 区间采用左闭右开表示.
K-D Tree的更多相关文章
- 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS
原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...
- AOJ DSL_2_C Range Search (kD Tree)
Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...
- Size Balance Tree(SBT模板整理)
/* * tree[x].left 表示以 x 为节点的左儿子 * tree[x].right 表示以 x 为节点的右儿子 * tree[x].size 表示以 x 为根的节点的个数(大小) */ s ...
- HDU3333 Turing Tree(线段树)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...
- POJ 3321 Apple Tree(树状数组)
Apple Tree Time Limit: 2000MS Memory Lim ...
- CF 161D Distance in Tree 树形DP
一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...
- Segment Tree 扫描线 分类: ACM TYPE 2014-08-29 13:08 89人阅读 评论(0) 收藏
#include<iostream> #include<cstdio> #include<algorithm> #define Max 1005 using nam ...
- Size Balanced Tree(SBT) 模板
首先是从二叉搜索树开始,一棵二叉搜索树的定义是: 1.这是一棵二叉树: 2.令x为二叉树中某个结点上表示的值,那么其左子树上所有结点的值都要不大于x,其右子树上所有结点的值都要不小于x. 由二叉搜索树 ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
随机推荐
- Nutch搜索引擎系列(目录)
下面是Nutch搜索系列目录,希望对研究Nutch的同学有所帮助. 目录安排: 1)Nutch搜索引擎(第1期)_ Nutch简介及安装[下载] 2)Nutch搜索引擎(第2期)_ Solr简介及安装 ...
- Spring 依赖注入方式详解
平常的Java开发中,程序员在某个类中需要依赖其它类的方法. 通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理. Spring提出了依赖注入的思想,即依赖类不由 ...
- Unity 5.3.1 No Android/IOS module loaded
unity我一直在用5.0以下的版本 昨天升级到了最新版本5.3.1 发现无法打android包,ios也不行 提示“No Android/IOS module loaded” 下面有个Module ...
- MVC+EF 理解和实现仓储模式和工作单元模式
MVC+EF 理解和实现仓储模式和工作单元模式 原文:Understanding Repository and Unit of Work Pattern and Implementing Generi ...
- Common Issues Which Cause Roles to Recycle
This section lists some of the common causes of deployment problems, and offers troubleshooting tips ...
- 阅读DNA-2014年读书
- 数学符号“s.t.”的意义
在优化问题的求解中,如线性规划.非线性规划问题等,经常会遇到数学符号“s.t.”,它的意思是什么呢? “s.t.”,指 subject to,受限制于.... 例如: 目标函数:min {x+2} 约 ...
- SQL语言概述
功能概述 DDL,数据库定义语言,创建,修改,删除数据库,表,视图,索引,约束条件等 DML,数据库操纵语言,对数据库中的数据进行增,删,改,查 DCL,数据库定义语言,对数据库总数据的访问设置权限 ...
- javascript面试题(一)
答案和解析在问题下一行,为白色字体 单选题 1.以下哪条语句会产生运行错误:(a) A.var obj = ();//语法错误 B.var obj = [];//创建数组 C.var obj = {} ...
- ListView简介
说起来,简介这种东西我一般都会去百度,不过似乎这样太没诚意了.╮(╯▽╰)╭ 没办法我再去查查别的资料 官方API,说的啥呢?经过一番研究我终于读懂了....╮(╯▽╰)╭ (让一个英语三级的学渣来分 ...