BZOJ 2301 【HAOI2011】 Problem b
Description
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
过了这么久终于写出了莫比乌斯反演的入门题TAT……
这道题主要用到了莫比乌斯函数的一个性质,对于任意正整数$n$,有:$$\sum_{d|n} \mu (d)= \begin{cases} 1 &(n=1) \\ 0 &(n>1) \end{cases}$$
所以$[gcd(i,j)=1]$这个式子可以表示为:$$\sum_{d|gcd(i,j)}\mu (d)$$
于是莫比乌斯反演对于处理$gcd(x,y)=1$这类条件时特别好用。
莫比乌斯反演戳这里
本题题解参见黄学长的博客(我已经翻到上一页了……想看本题代码请翻下一篇)
毕竟我就是看着黄学长的博客做出来的……
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 50010 using namespace std;
typedef long long llg; int T,a,b,c,d,k,ls;
int mu[maxn],s[maxn],w[maxn];
bool vis[maxn]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} void get(){//线性筛素数与莫比乌斯函数
mu[1]=1;
for(int i=2;i<maxn;i++){
if(!vis[i]) s[++ls]=i,mu[i]=-1;
for(int j=1;j<=ls && s[j]*i<maxn;j++){
vis[s[j]*i]=1;
if(i%s[j]) mu[s[j]*i]=-mu[i];
else{mu[s[j]*i]=0;break;}
}
}
for(int i=1;i<maxn;i++) w[i]=w[i-1]+mu[i];
} llg F(int n,int m){//求出x在[1,n]中、y在[1,m]中的答案
llg ans=0;
if(n>m) swap(n,m);
for(int i=1,nt;i<=n;i=nt+1){
nt=min(n/(n/i),m/(m/i));
ans+=(llg)(w[nt]-w[i-1])*(llg)(n/i)*(llg)(m/i);
}
return ans;
} int main(){
File("a");
get(); T=getint();
while(T--){
a=getint(); b=getint(); c=getint();
d=getint(); k=getint(); a--; c--;//注意边界
a/=k; b/=k; c/=k; d/=k;
printf("%lld\n",F(b,d)-F(a,d)-F(b,c)+F(a,c));//转化为前缀和容斥求解
}
return 0;
}
BZOJ 2301 【HAOI2011】 Problem b的更多相关文章
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- 清北学堂例题 LUOGU2519 【HAOI2011】PROBLEM A
题目描述 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) 输入格式 第一行一个整数n,接下来n行每行两个整数,第i+1行 ...
- 【BZOJ2301】【HAOI2011】Problem b [莫比乌斯反演]
Problem b Time Limit: 50 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次 ...
- 【HAOI2011】problem b
数论好劲啊 原题: 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b ...
- 【HAOI2011】problem a
又看题解了,这样下去要跪啊QAQ 原题: 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) 1≤n≤100000 0≤ ...
- 清北学堂例题 LUOGU2523【HAOI2011】problem c
题目描述 给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了,就尝试ai+1 ...
- 【题解】【HAOI2011】Problem b
\(Luogu2522\) 题目大意:求下面式子的值: \[\sum_{i=x}^n\sum_{j=y}^m[\gcd(i,j)=k] \] 这个东西直接求不好求,考虑差分,从\([1,n]\)的范围 ...
- 【BZOJ2998】Problem A(动态规划)
[BZOJ2998]Problem A(动态规划) 题面 BZOJ 题解 一个人的成绩范围可以确定为一个区间 这样就变成了 选择若干区间,不重合, 每个区间有个权值,求最大权值和 这样就可直接\(dp ...
- BZOJ 1854 【Scoi2010】 游戏
Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性 ...
随机推荐
- classpath: 和classpath*:的区别
classpath本质是jvm的根路径,jvm获取资源都是从该根路径下找的,注意这个根路径是个逻辑路径,并不是磁盘路径.比如两个jar包的路径是/a/a.jar和/b/b.jar,但是用classpa ...
- 修改Mac系统的默认截图保存路径到指定目录
注:此文仅针对mac系统如果你是mac用户,会发现桌面经常一团糟,桌面到处都是平时的截图(mac系统的截图是command+shift+3 和 command+shift+4 两个快捷命令) 之前一直 ...
- [转]CentOS 6.4下PXE+Kickstart无人值守安装操作系统
一.简介 1.1 什么是PXE PXE(Pre-boot Execution Environment,预启动执行环境)是由Intel公司开发的最新技术,工作于Client/Server的网络模式,支持 ...
- jQuery简单入门(二)
2.Dom操作 A.DOM分类 个人认为在jQuery中这些分类被弱化了,有兴趣的读者可以自行补充这方面的知识: aa.DOM Core bb.HTML -DOM cc. CSS-DOM B.jQue ...
- Mysql 创建用户 授权
一, 创建用户: 命令:CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明:username - 你将创建的用户名, host - 指 ...
- Tomcat 目录详解
一.文字版本: bin: 该目录下存放的是二进制可执行文件,如果是安装版,那么这个目录下会有两个exe文件:tomcat6.exe.tomcat6w.exe,前者是在控制台下启动Tomcat,后者是 ...
- JUnit4生命周期
- /etc/fstab 参数详解及如何设置开机自动挂载
某些时候当Linux系统下划分了新的分区后,需要将这些分区设置为开机自动挂载,否则,Linux是无法使用新建的分区的. /etc/fstab 文件负责配置Linux开机时自动挂载的分区. Window ...
- Elasticsearch 安装中文分词
github地址:https://github.com/medcl/elasticsearch-analysis-ik 注意版本要对应,否则编译完成后elasticsearch不能正常启动 下载文件, ...
- js 读取 cookie
(新摘未验证)// 将document.cookie的值以名/值对组成的一个对象返回 // 假设储存cookie的值的时候是采用encodeURIComponent()函数编码的 function g ...