First One

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 831    Accepted Submission(s): 253

Problem Description
soda has an integer array a1,a2,…,an. Let S(i,j) be the sum of ai,ai+1,…,aj. Now soda wants to know the value below:

∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)

Note: In this problem, you can consider log20 as 0.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integer n (1≤n≤105), the number of integers in the array.
The next line contains n integers a1,a2,…,an (0≤ai≤105).

 
Output
For each test case, output the value.
 
Sample Input
1
2
1 1
 
Sample Output
12
 
Source
 
 #include<bits/stdc++.h>
using namespace std;
typedef long long ll ;
const int M = 1e5 + ;
ll n ;
ll a[M] ;
ll ure[M] ;
ll tot ;
void solve () {
for (int k = ; k < ; k ++) {
ll low = 1ll << k , sum = ;
for (int i = , j = ; i <= n ; i ++) {
while (j <= n && sum < low) sum += a[++j] ;
if (sum >= low) tot += i * (n-j+) + ure[j] ;
else break ;
sum -= a[i] ;
}
}
printf ("%I64d\n" , tot) ;
} int main () {
int T ;
scanf ("%d" , &T ) ;
while (T --) {
scanf ("%I64d" , &n) ;
for (int i = ; i <= n ; i ++) scanf ("%I64d" , &a[i]) ; ure[n+] = ;
tot = ;
for (int i = n ; i >= ; i --) {
ure[i] = ure[i+] + i ;
tot += i * (n-i+) + ure[i] ;
} solve () ;
}
return ;
}

比赛的时候思路很明确,log2 + 1那部分最多就1~40,所以枚举一下,每次枚举时用 尺取法 求得所有区间即可。

所以总的复杂度为O(40*n) , 后来又注意到尺取法的界限判断是要映射一下,所以复杂度变成了O(40*n*log40) ,然后oj就给我判TLE了,

这只能说出题人卡的实在是。。。。是在下输了

当然赛后看标成时,还是发现写法漏洞很大。

1.标成上他把log2 和 1 这两部分分开来处理,算1这部分O(n)的复杂度。

2.因为log2那部分是个浮动的区间和,所以直接用 尺取法 不行。(因为我的作法是:比如说枚举到5时,我想利用 尺取法 得到所有映射后为5的区间)

但标成很机智的改成了:枚举到i时,当前多少个区间映射后的值是>=i的,然后加上他们。如果每次枚举都这么做,你会发现区间映射值为5的就加了5次,

为6的被加了6次。

因此把浮动的区间和,变成了一个定值,那么 尺取法 就又能发挥它的作用了。

2015多校1006.First One的更多相关文章

  1. hdu 5288||2015多校联合第一场1001题

    pid=5288">http://acm.hdu.edu.cn/showproblem.php?pid=5288 Problem Description OO has got a ar ...

  2. hdu5379||2015多校联合第7场1011 树形统计

    pid=5379">http://acm.hdu.edu.cn/showproblem.php? pid=5379 Problem Description Little sun is ...

  3. 2015 多校赛 第五场 1006 (hdu 5348)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5348 题目大意:给出一幅无向图,问是否存在一种方案,使得给每条边赋予方向后,每个点的入度与出度之差小于 ...

  4. 2015 多校赛 第二场 1006 (hdu 5305)

    Problem Description There are n people and m pairs of friends. For every pair of friends, they can c ...

  5. HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)

    pid=5358">HDU 5358 题意: 求∑​i=1​n​​∑​j=i​n​​(⌊log​2​​S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...

  6. 2015多校.Zero Escape (dp减枝 && 滚动数组)

    Zero Escape Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  7. HDU 5289 Assignment(2015 多校第一场二分 + RMQ)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  8. hdu5294||2015多校联合第一场1007 最短路+最大流

    http://acm.hdu.edu.cn/showproblem.php? pid=5294 Problem Description Innocent Wu follows Dumb Zhang i ...

  9. 2015 多校联赛 ——HDU5334(构造)

    Virtual Participation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Ot ...

随机推荐

  1. Manacher算法

    Manacher算法是求回文串最高效的算法,能在线性时间内求出以每一个字符为中心的最长回文串.   首先,我们都能想出$O(N^2)$求出每一个字符为中心的最长回文串的算法.那么我们考虑这样一种情况. ...

  2. ubuntu --- shortcut key

    Linux系统下图形界面与Linux命令行模式的切换的方法 由图形转换到控制台模式:ctrl+alt+f1~f6(同时按下3秒钟不要马上松开)....由控制台转向图形模式是:alt+f7 快捷键(ub ...

  3. UI学习之常用方法

    1.-(BOOL) respondsToSelector: selector 用来判断是否有以某个名字命名的方法(被封装在一个selector的对象里传递) if ([delegate respond ...

  4. 【转】Yeoman自动构建 Angularjs 项目

    Yeoman是什么? Yeoman按照官方说法,它不只是一个工具,还是一个工作流.它其实包括了三个部分yo.grunt.bower,分别用于项目的启动.文件操作.包管理. Yo: Yo是一个项目初始化 ...

  5. 最小路径(prim)算法

    #include <stdio.h>#include <stdlib.h>/* 最小路径算法 -->prim算法 */#define VNUM 9#define MV 6 ...

  6. logback 详解

    原创文章,转载请指明出处:http://aub.iteye.com/blog/1103685, 尊重他人即尊重自己 详细整理了logback常用配置, 不是官网手册的翻译版,而是使用总结,旨在更快更透 ...

  7. 分享jquery实现百叶窗特效的图片轮播

    首先非常感谢网友嘉翼的无私分享,这是他刚在网站扣下来的特效,第一时间与大家分享,jquery实现百叶窗特效的图片轮播 使用方法: 1.引用css文件,css文件里面已经做了注释,基本只需要修改宽高就好 ...

  8. android 点击屏幕关闭 软键盘

    //点击屏幕 关闭输入弹出框 @Override public boolean onTouchEvent(MotionEvent event) { InputMethodManager im = (I ...

  9. 【转】Delphi 关键字详解

    absolute //它使得你能够创建一个新变量, 并且该变量的起始地址与另一个变量相同. var Str: string[32]; StrLen: Byte absolute Str; //这个声明 ...

  10. jQuery checkbox 所有 全选、全不选、是否选中等

    下面是网络收集: jquery判断checked的三种方法:.attr('checked):   //看版本1.6+返回:”checked”或”undefined” ;1.5-返回:true或fals ...