POJ 3292 Semi-prime H-numbers
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6873 | Accepted: 2931 |
Description
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.
An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.
As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.
For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.
Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.
Input
Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.
Output
For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.
Sample Input
21
85
789
0
Sample Output
21 0
85 5
789 62
Source
Waterloo Local Contest, 2006.9.30
#include <iostream>
#include <cstdio> #include <cstring> using namespace std; const int MAXN=1000100; int H[MAXN],cnt[MAXN]; void Init() int main() |
* This source code was highlighted by YcdoiT. ( style: Codeblocks )
POJ 3292 Semi-prime H-numbers的更多相关文章
- 【POJ 3292】 Semi-prime H-numbers
[POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...
- POJ 3292 Semi-prime H-numbers (素数筛法变形)
题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...
- Day7 - I - Semi-prime H-numbers POJ - 3292
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study th ...
- POJ 3126:Prime Path(素数+BFS)
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that ...
- 【POJ】1811 Prime Test
http://poj.org/problem?id=1811 题意:求n最小素因子.(n<=2^54) #include <cstdio> #include <cstring& ...
- POJ 3292
Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7059 Accepted: 3 ...
- POJ 2560 Freckles Prime问题解决算法
这个问题正在寻求最小生成树. 给定节点的坐标,那么我们需要根据各个点之间的这些坐标来计算距离. 除了这是标准的Prime算法的,能源利用Prime基本上,你可以使用Kruskal. 经典的算法必须填写 ...
- poj 3925 枚举+prime
/* 因为15很小可以暴力枚举然后用最小生成树的prim来计算 */ #include<stdio.h> #include<string.h> #include<math ...
- 【POJ 2689】 Prime Distance
[题目链接] http://poj.org/problem?id=2689 [算法] 我们知道,一个在区间[l,r]中的合数的最小质因子必然不超过sqrt(r) 那么,先暴力筛出1-50000中的质数 ...
随机推荐
- CentOS找回root密码
如果忘记了root密码,可以进入单用户模式进行密码重置. 重启系统,在grub的启动菜单中按下e键,然后编辑kernel那一行,在最后的quiet后加上single. 按下Enter后,再按b开机进入 ...
- Visual Studio 创建WebServer
1.文件-->新建-->项目 2.Web-->Visual Studio 2012-->ASP.NET 空Web应用程序 3.右键项目-->添加-->新建项 4.选 ...
- 【Phylab2.0】Alpha版本测试报告
测试报告集 点击链接
- 零散的JavaScript公用方法
function stopBubble(e) { if (e && e.stopPropagation) {//如果传入了事件对象,那么就是非IE浏览器 e.stopPropagati ...
- React Native 开发之 (05) flexbox布局
一 flexbox布局 1 flex布局 flexbox是ReactNative 应用开发中必不可少的内容,也是最常用的内容. 传统的页面布局是基于盒子模型,依赖定位属性,流动属性和显示属性来解决. ...
- 问题导向VS目标导向:领导者要倾向哪种?
人类进步的驱动: 问题驱动:目标驱动: 两者相互影响: 问题驱动是起点,并且在很多杂乱的问题中只有少数可以转化为目标,从而成为进步的动力:多数问题只是以干扰的形式出现. 问题驱动是被动的,并且常常干扰 ...
- uC/OS-II内核的服务文件
/*************************************************************************************************** ...
- C#读写文本文件
static public string Read(string path) { StreamReader sr = new StreamReader(path,Encoding.Default); ...
- 20145212 实验三《敏捷开发与XP实践》
20145212 实验三<敏捷开发与XP实践> 实验内容 使用git上传代码 与20145223同学一组,使用git相互更改代码 同组实验报告链接:http://www.cnblogs.c ...
- Linux下Memcache 安装和使用
Memcached是一种高性能的分布式内存对象缓存系统(memcached虽然称为“分布式”缓存服务器,但服务器端并没有“分布式”功能,其“分布式”由客户端函数库完成,成熟算法的为一致性Hash),用 ...