Implement a data structure supporting the following operations:

Inc(Key) - Inserts a new key with value 1. Or increments an existing key by 1. Key is guaranteed to be a non-empty string.
Dec(Key) - If Key's value is 1, remove it from the data structure. Otherwise decrements an existing key by 1. If the key does not exist, this function does nothing. Key is guaranteed to be a non-empty string.
GetMaxKey() - Returns one of the keys with maximal value. If no element exists, return an empty string "".
GetMinKey() - Returns one of the keys with minimal value. If no element exists, return an empty string "".
Challenge: Perform all these in O(1) time complexity.

Solution: O(1) time complexity

解题思路主要参考了网友ivancjw的帖子,数据结构参考了https://discuss.leetcode.com/topic/65634/java-ac-all-strict-o-1-not-average-o-1-easy-to-read用bucket,思路是,我们建立一个次数分层的结构,次数多的在顶层,每一层放相同次数的key值,例如下面这个例子:

"A": 4, "B": 4, "C": 2, "D": 1

那么用我们设计的结构保存出来就是:

row0: val = 4, keys = {"A", "B"}
row1: val = 2, keys = {"C"}
row2: val = 1, keys = {"D"}

 public class AllOne {
public class Bucket {
int count;
Bucket prev;
Bucket next;
HashSet<String> keySet;
public Bucket(int num) {
this.count = num;
this.keySet = new HashSet<String>();
}
} Bucket head;
Bucket tail;
HashMap<String, Integer> keyCountMap;
HashMap<Integer, Bucket> countBucketMap; /** Initialize your data structure here. */
public AllOne() {
this.head = new Bucket(Integer.MIN_VALUE);
this.tail = new Bucket(Integer.MAX_VALUE);
head.next = tail;
tail.prev = head;
this.keyCountMap = new HashMap<String, Integer>();
this.countBucketMap = new HashMap<Integer, Bucket>();
} /** Inserts a new key <Key> with value 1. Or increments an existing key by 1. */
public void inc(String key) {
if (keyCountMap.containsKey(key)) {
change(key, 1);
}
else {
keyCountMap.put(key, 1);
if (head.next.count != 1) { //dont have the 1 bucket
addBucketAfter(new Bucket(1), head);
countBucketMap.put(1, head.next);
}
head.next.keySet.add(key);
}
} /** Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. */
public void dec(String key) {
if (keyCountMap.containsKey(key)) {
int count = keyCountMap.get(key);
if (count == 1) {
keyCountMap.remove(key);
removeKeyFromBucket(countBucketMap.get(count), key);
}
else change(key, -1);
}
} /** Returns one of the keys with maximal value. */
public String getMaxKey() {
return tail.prev==head? "" : (String)tail.prev.keySet.iterator().next();
} /** Returns one of the keys with Minimal value. */
public String getMinKey() {
return head.next==tail? "" : (String)head.next.keySet.iterator().next();
} public void change(String key, int offset) {
//get count, update keyCountMap
int count = keyCountMap.get(key);
keyCountMap.put(key, count+offset); //get current bucket
Bucket curBucket = countBucketMap.get(count); //new bucket
Bucket newBucket;
if (countBucketMap.containsKey(count+offset)) {
newBucket = countBucketMap.get(count+offset);
}
else {
newBucket = new Bucket(count+offset);
countBucketMap.put(count+offset, newBucket);
addBucketAfter(newBucket, (offset==1? curBucket : curBucket.prev));
}
newBucket.keySet.add(key);
removeKeyFromBucket(curBucket, key);
} public void removeKeyFromBucket(Bucket cur, String key) {
cur.keySet.remove(key);
if (cur.keySet.size() == 0) {
removeBucketFromList(cur);
countBucketMap.remove(cur.count);
}
} public void removeBucketFromList(Bucket cur) {
cur.prev.next = cur.next;
cur.next.prev = cur.prev;
cur.next = null;
cur.prev = null;
} public void addBucketAfter(Bucket bucket, Bucket preBucket) {
bucket.prev = preBucket;
bucket.next = preBucket.next;
preBucket.next.prev = bucket;
preBucket.next = bucket;
}
} /**
* Your AllOne object will be instantiated and called as such:
* AllOne obj = new AllOne();
* obj.inc(key);
* obj.dec(key);
* String param_3 = obj.getMaxKey();
* String param_4 = obj.getMinKey();
*/

Solution 2: 如果不要求O(1)time, 这个用两个heap方法很常规

 public class AllOne {

     class Node{
String key;
int val;
public Node(String key, int val) {
this.key = key;
this.val = val;
}
}
/** Initialize your data structure here. */
HashMap<String, Node> map;
PriorityQueue<Node> minQ;
PriorityQueue<Node> maxQ;
public AllOne() {
map = new HashMap<String, Node>();
minQ = new PriorityQueue<Node>(new Comparator<Node>(){
public int compare(Node a, Node b) {
return a.val - b.val;
}
});
maxQ = new PriorityQueue<Node>(new Comparator<Node>(){
public int compare(Node a, Node b) {
return b.val - a.val;
}
});
} /** Inserts a new key <Key> with value 1. Or increments an existing key by 1. */
public void inc(String key) {
if (!map.containsKey(key)) {
map.put(key, new Node(key, 1));
Node node = map.get(key);
minQ.add(node);
maxQ.add(node);
} else {
Node node = map.get(key);
minQ.remove(node);
maxQ.remove(node);
node.val++;
map.put(key, node);
minQ.add(node);
maxQ.add(node);
}
} /** Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. */
public void dec(String key) {
if (map.containsKey(key)) {
Node node = map.get(key);
if (node.val == 1) {
map.remove(key);
minQ.remove(node);
maxQ.remove(node);
} else {
minQ.remove(node);
maxQ.remove(node);
node.val--;
map.put(key, node);
minQ.add(node);
maxQ.add(node);
}
}
} /** Returns one of the keys with maximal value. */
public String getMaxKey() {
return maxQ.isEmpty() ? "" : maxQ.peek().key;
} /** Returns one of the keys with Minimal value. */
public String getMinKey() {
return minQ.isEmpty() ? "" : minQ.peek().key;
}
}

Leetcode: All O`one Data Structure的更多相关文章

  1. [LeetCode] All O`one Data Structure 全O(1)的数据结构

    Implement a data structure supporting the following operations: Inc(Key) - Inserts a new key with va ...

  2. [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计

    Design and implement a TwoSum class. It should support the following operations:add and find. add - ...

  3. LeetCode Two Sum III - Data structure design

    原题链接在这里:https://leetcode.com/problems/two-sum-iii-data-structure-design/ 题目: Design and implement a ...

  4. [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  5. Java for LeetCode 211 Add and Search Word - Data structure design

    Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...

  6. leetcode@ [211] Add and Search Word - Data structure design

    https://leetcode.com/problems/add-and-search-word-data-structure-design/ 本题是在Trie树进行dfs+backtracking ...

  7. leetcode面试准备:Add and Search Word - Data structure design

    leetcode面试准备:Add and Search Word - Data structure design 1 题目 Design a data structure that supports ...

  8. LeetCode 170. Two Sum III - Data structure design (两数之和之三 - 数据结构设计)$

    Design and implement a TwoSum class. It should support the following operations: add and find. add - ...

  9. 【LeetCode】170. Two Sum III – Data structure design

    Difficulty:easy  More:[目录]LeetCode Java实现 Description Design and implement a TwoSum class. It should ...

随机推荐

  1. 深入浅出 - Android系统移植与平台开发(十) - led HAL简单设计案例分析

    作者:唐老师,华清远见嵌入式学院讲师. 通过前两节HAL框架分析和JNI概述,我们对Android提供的Stub HAL有了比较详细的了解了,下面我们来看下led的实例,写驱动点亮led灯,就如同写程 ...

  2. Windows Maven package时报错问题的解决

    google了一把,看到别人的说法是Stack size 不够大. Stack Space用来做方法的递归调用时压入Stack Frame.所以当递归调用太深的时候,就有可能耗尽Stack Space ...

  3. C++的STL中vector内存分配方法的简单探索

    STL中vector什么时候会自动分配内存,又是怎么分配的呢? 环境:Linux  CentOS 5.2 1.代码 #include <vector> #include <stdio ...

  4. [LintCode] Coins in a Line 一条线上的硬币

    There are n coins in a line. Two players take turns to take one or two coins from right side until t ...

  5. Odoo 仓库扫码打包方案

        Odoo仓库扫码的设计,前提是操作人在PC上先做好分拣单,然后根据打印出来的分拣单去仓库进行扫码打包,默认的情况下,分拣在被确认的时候会自动保留库位中已经存在的库存(已经分配批次\序列号),而 ...

  6. AJAX联想查询的例子

    //通过输入值的不断改变而改变(按键事件)提示内容的功能,然后可以选着你想要的内容填充进来. html主要代码:test1.html <!DOCTYPE html><html> ...

  7. php引用&符号详解——————给变量起小名

    学习了这篇博客[http://blog.csdn.net/jiedushi/article/details/6428585] php中引用采用的是“写时拷贝”的原理,就是除非发生写操作,指向同一个地址 ...

  8. NeuSoft(1)构建嵌入式交叉编译环境

    操作系统版本:ubuntu 12.04 内核名称:Linux 内核发行版:3.2.0-generic 内核版本:#50-Ubuntu SMP Mon Sep 12 21:18:14 UTC 2011 ...

  9. rename 快速移动文件或者文件夹

    有几种情况: 1.对于文件,rename可以在不同盘符之间移动. 2.对于空文件夹,rename也可以在不同盘符之间移动.但是目标文件夹的父目录必须存在. 3.对于非空文件夹,只能在同一盘符下移动. ...

  10. jquery_简单介绍

    jquery是一个优秀的javascript的库. jquery对象是通过jquery包装DOM对象产生的对象 配置jquery 在<head> <script   src=&quo ...