hiho #1372:平方求 (bfs)
#1372 : 平方求和
描述
对于一个非负整数n,最少需要几个完全平方数,使其和为n?
输入
输入包含多组数据。对于每组数据:
第一行是n;如果n为-1,表示输入结束。(0 <= n <= 1000000001)
输出
针对每组数据,输出最少需要的完全平方数。
- 样例输入
-
3
4
5
-1 - 样例输出
-
3
1
2
思路:
拿到这个题,我第一想到的是贪心,每次减去一个最大数的平方,但是有时候这样会得不到正确的答案,比如19 ,贪心的话就是4,1,1,1.。。。正确的应该是3,3,1.。。。
然后dp,dp虽然可以得到正确的答案,但是时间复杂度高了。pass。
在想到搜索
让我们可视化一下,
原来是个搜索的题目。
如何加速?
我们应该深度优先搜索吗?
当然不是啦!因为我们求的是最少的拆解,所以应该宽度优先搜索。
宽搜的时候,用一个last和一个nlast分别记录当前行的最后一个元素,和下一行的最后一个元素。
如何再加速?
如果我们为了收敛快,似乎方向反了。
如何再加速?
我们有些节点是不是可能重复访问?建立一个hash表存一下吧。
如何再快呢?
证明题:每个正整数都可以表示为4个完全平方数的和。
什么?居然还需要数论的知识。我不知道怎么办?
没什么啊,我们刚才的宽度优先搜索已经能够保证和这个算法是一个复杂度了。
代码:
宽搜:
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std; //
int bfs(long long n)
{
queue<long long> q;
int t = ;
long long head,last=n,nlast; //last当前行最右,nlast下一行最右
q.push(n);
while (!q.empty())
{
head = q.front();
if (t == )
{
int c = ;
} if (t == )
break;
q.pop();
if (head != )
{
for (int i = sqrt(head); i > ; i--)
{
if (head - i*i == )
return t;
q.push(head-i*i); nlast = head - i*i;
} if (head == last && !q.empty())
{
t++;
last = nlast;
}
}
}
} int main()
{
long long n;
while (cin>>n)
{
if (n == -)
break;
cout<< bfs(n)<<endl; }
system("pause");
return ;
}
数论方法AC:
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std; //
bool is_sqrt(long long n)
{
int m = sqrt(n);
if (m*m == n)
return true;
else
return false;
} int solve(long long n)
{
if (is_sqrt(n))
return ;
while (n % == )
n /= ; if (n % == )
return ; for (int i = ; i*i < n; i++)
{
if (is_sqrt(n - i*i))
return ;
}
return ;
} int main()
{
long long n;
while (cin>>n)
{
if (n == -)
break;
cout<< solve(n)<<endl; }
system("pause");
return ;
}
hiho #1372:平方求 (bfs)的更多相关文章
- PKU 2002 Squares(二维点哈希+平方求余法+链地址法)
题目大意:原题链接 给定平面上的N个点,求出这些点一共可以构成多少个正方形. 解题思路: 若正方形为ABCD,A坐标为(x1, y1),B坐标为(x2, y2),则很容易可以推出C和D的坐标.对于特定 ...
- hiho #1305 区间求差
#1305 : 区间求差 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定两个区间集合 A 和 B,其中集合 A 包含 N 个区间[ A1, A2 ], [ A3, ...
- (step4.2.1) hdu 1372(Knight Moves——BFS)
解题思路:BFS 1)马的跳跃方向 在国际象棋的棋盘上,一匹马共有8个可能的跳跃方向,如图1所示,按顺时针分别记为1~8,设置一组坐标增量来描述这8个方向: 2)基本过程 设当前点(i,j),方向k, ...
- HDU 1372 Knight Moves(BFS)
题目链接 Problem Description A friend of you is doing research on the Traveling Knight Problem (TKP) whe ...
- hiho 1613 - 墨水滴 - bfs+优先队列 *
题目链接 小Ho有一张白纸,上面有NxN个格子.小Ho可以选择一个格子(X, Y),在上面滴一滴墨水.如果这滴墨水的颜色深度是G,那么这个格子也会被染成深度为G的格子.同时周围的格子也会被这滴墨水浸染 ...
- HDU5957 Query on a graph(拓扑找环,BFS序,线段树更新,分类讨论)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5957 题意:D(u,v)是节点u和节点v之间的距离,S(u,v)是一系列满足D(u,x)<=k的点 ...
- HAOI2018游记
前言 很懒. 太懒了. 不仅懒得写题..连游记都懒得写.. 花点时间填一下坑吧..不过话说我去年的NOI/APIO/CTSC游记也没写.. 省选前 板子好像一早就打完了,没什么可干的. 也不愿意开新题 ...
- K - 迷宫问题
/*定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, ...
- python机器学习《回归 一》
唠嗑唠嗑 依旧是每一次随便讲两句生活小事.表示最近有点懒,可能是快要考试的原因,外加这两天都有笔试和各种面试,让心情变得没那么安静的敲代码,没那么安静的学习算法.搞得第一次和技术总监聊天的时候都不太懂 ...
随机推荐
- windows7-SQLyog 安装图解
双击: 双击已下载的SQLyog Enterprise 安装文件,点击“next”,选择“I accept...”,勾选安装组件,选择安装目录,等待安装完成. 协议:选择我接受 选择操作 选择路径 ...
- mysql循环获取结果集
do { MYSQL_RES* res = mysql_store_result(con); ) { MYSQL_ROW row; if (row = mysql_fetch_row(res)) { ...
- 自然语言17_Chinking with NLTK
https://www.pythonprogramming.net/chinking-nltk-tutorial/?completed=/chunking-nltk-tutorial/ 代码 # -* ...
- python中配置文件写法
import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) print(BASE_DIR) USE ...
- Transmission 设置硬盘缓存
1.找到settings.json 调置文件.此文件是transmission的配置文件.一般存放在 /home/用户名/.config/transmission 目录下. ...
- thinkphp笔记
1.load('@.function') 临时性加载 指的是Common文件下的 function 如 function select(){} , locad中的function实际指的就是 com ...
- ecshop上传图片2
html代码 <tr> <td class="label">{$lang.lab_picture}</td> <td> <in ...
- 分享一个控制JS 浏览器缓存的解决办法。
JS 缓存的问题一直都是我们又爱又恨的东西.也是我们比较头痛的问题, 一方面为了提高网站响应速度,减少服务器的负担,和节省带宽,将需要将静态资源缓存在客户端, 但是另一方面,当js 文件有改动的时候 ...
- Enabling and Mounting NFS on CoreOS
http://blog.scottlowe.org/2015/02/20/config-mount-nfs-coreos/ #cloud-config write-files: - path: /et ...
- MySQL注入
SQL Injection Tutorial by Marezzi (MySQL) SQL注入教程由Marezzi(MySQL的) In this tutorial i will describe h ...