Spark MLib 基本统计汇总 2
4. 假设检验
基础回顾:
- 假设检验,用于判断一个结果是否在统计上是显著的、这个结果是否有机会发生。
- 显著性检验
- 原假设与备择假设
常把一个要检验的假设记作 H0,称为原假设(或零假设) (null hypothesis)
与H0对立的假设记作H1,称为备择假设(alternative hypothesis)
- 拟合优度Goodness of Fit,是指回归直线对观测值的拟合程度。
对非线性方程:
(1)计算残差平方和 Q =∑(y-y*)2 和 ∑y2 ,其中,y 代表的是实测值,y* 代表的是预测值
(2)拟合度指标 RNew=1-(Q/∑y2)1/2
角标new就是为了和线性回归方程的判定系数R2、adjusted R2进行区别。在对方程拟合程度的解释上,Rnew和R2、adjusted R2是等价的,其意义也相同。
对线性方程:
R2 = ∑(y预测-y)2/∑(y实际-y)2,y是平均数。
如果R2=0.775,则说明变量y的变异中有77.5%是由变量X引起的。
当R2=1时,表示所有的观测点全部落在回归直线上。
当R2=0时,表示自变量与因变量无线性关系。
- 独立性检验(属于卡方检验的一种)
它是根据频数判断两类因子彼此相关或相互独立的假设检验。
假设有两个分类变量X和Y,它们的值域分另为{x1, x2}和{y1, y2},其样本频数列联表为:
构造统计量:
K2越小,原假设H0成立的可能性越大;它越大,目标结论H1成立的可能性越大.)
步骤:
Mlib的假设检验:
spark.mllib
目前支持皮尔森卡方检测。- 输入属性的类型决定拟合优度(
goodness of fit
)检测还是独立性检测。 拟合优度检测需要输入数据的类型是vector
,独立性检测需要输入数据的类型是Matrix
。 - import org.apache.spark.mllib.stat.Statistics._ ; Statistics 的 chiSqTest 方法用来做检测,当输入 vector和Matrix 时不同的检验。
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.stat.Statistics._ // 作皮尔森拟合优度检测
val vec: Vector =Vectors.dense(1.0, 2.0, 3.0)
val goodnessOfFitTestResult = Statistics.chiSqTest(vec)
println(goodnessOfFitTestResult) // 作皮尔森独立性检测
val mat: Matrix =Matrices.dense(3,2,Array(9.0,1.0,2.0,3.0,8.0,6.0))
val independenceTestResult = Statistics.chiSqTest(mat)
println(independenceTestResult)
5. 随机数生成
spark.mllib
支持生成随机的RDD
, RDD
的独立同分布(iid
)的值来自于给定的分布:均匀分布、标准正太分布、泊松分布。
例子:用标准正态分布生成一个随机的双精度RDD
import org.apache.spark.mllib.random.RandomRDDs._ val u = normalRDD(sc, 1000000L, 10) // 生成了一个10个RDD分区的百万个随机数 val v = u.map(x => 1.0 + 2.0 * x) //把标准正态分布产生的随机数map到N(1,4)的正态分布
6. 核密度估计
http://blog.163.com/zhuandi_h/blog/static/1802702882012111092743556/
核密度估计可以用来估计未知的密度函数,属于非参数检验方法。
假设我们有n
个数 ,要计算某个数
X
的概率密度有多大, 可以通过下面的核密度估计方法估计。
K
为核密度函数,h
为窗宽。
原理比较简单,在我们知道某一事物的概率分布的情况下
如果某一个数在观察中出现了,我们认为这个数的概率密度很大,和这个数近的数的概率密度也比较大;而那些离这个数远的数的概率密度会比较小。
- 基于这种想法,针对观察中的第一个数,我们可以用
K
去拟合我们想象中的那个远小近大概率密度。
对每一个观察数拟合出的多个概率密度分布函数,取平均。 如果某些数是比较重要的,则可以取加权平均。
- 核密度的估计并不是找到真正的分布函数。
- 在
MLlib
中,仅仅支持以 高斯核(正态分布) 做核密度估计:
- KernelDensity 的 estimate 方法
import org.apache.spark.mllib.stat.KernelDensity
import org.apache.spark.rdd.RDD val data: RDD[Double] = ... // an RDD of sample data val kd = new KernelDensity()
.setSample(data)
.setBandwidth(3.0)
val densities = kd.estimate(Array(-1.0, 2.0, 5.0))
Spark MLib 基本统计汇总 2的更多相关文章
- Spark MLib 基本统计汇总 1
1. 概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个 ...
- Spark MLib完整基础入门教程
Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...
- Spark MLib:梯度下降算法实现
声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...
- Spark mlib的本地向量
Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector. ...
- 利用Oracle内置分析函数进行高效统计汇总
分析函数是Oracle从8.1.6开始引入的一个新的概念,为我们分析数据提供了一种简单高效的处理方式.在分析函数出现以前,我们必须使用自联查询,子查询或者内联视图,甚至复杂的存储过程实现的语句,现 ...
- spark 省份次数统计实例
//统计access.log文件里面IP地址对应的省份,并把结果存入到mysql package access1 import java.sql.DriverManager import org.ap ...
- sql简单实用的统计汇总案例参考
USE [PM]GO/****** 对象: StoredProcedure [dbo].[LfangSatstics] 脚本日期: 08/24/2013 10:57:48 ******/SET ...
- Spark笔记——技术点汇总
目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standa ...
- Spark Streaming 002 统计单词的例子
1.准备 事先在hdfs上创建两个目录: 保存上传数据的目录:hdfs://alamps:9000/library/SparkStreaming/data checkpoint的目录:hdfs://a ...
随机推荐
- 用mysql触发器实现log记录
首先建立两张测试用表 mysql> desc pay; +-------+---------------+------+-----+---------+----------------+ | F ...
- PAT 1026. 程序运行时间(15)
要获得一个C语言程序的运行时间,常用的方法是调用头文件time.h,其中提供了clock()函数,可以捕捉从程序开始运行到clock()被调用时所耗费的时间.这个时间单位是clock tick,即&q ...
- java多线程系类:基础篇:10生产者消费者的问题
概要 本章,会对"生产/消费者问题"进行讨论.涉及到的内容包括:1. 生产/消费者模型2. 生产/消费者实现 转载请注明出处:http://www.cnblogs.com/skyw ...
- 035医疗项目-模块三:药品供应商目录模块——供货商药品目录(批量)添加药品的功能---------Service
这篇文章我们重点介绍Service层.因为Dao层就是用Gysypml逆向生成的Mapper就可以了.所以这里重点讲解Service层. 业务逻辑如下: 1:我们从前端页面传入有两个值:1:userg ...
- CSS3 3D骰子
z zz zz zzzz zzzzz zzzzzz
- QT QMianWindow类
QMianWindow是一个为用户提供主窗口程序的类,包含一个菜单栏(menu bar).及一个中心部件(central widget),是许多应用程序的基础,如文本编辑器等. QMainWindow ...
- JSP中的Servlet及Filter
asp.net中,如果开发人员想自己处理http请求响应,可以利用HttpHandler来满足这一要求:类似的,如果要拦截所有http请求,可以使用HttpMoudle.java的web开发中,也有类 ...
- TinyFrame升级之一:框架概览
由于之前的TinyFrame多于简单,并且只是说明原理,并无成型的框架出来,所以这次我把之前的知识进行了汇总,然后做出了这一版的TinyFrame框架. 整个框架的结构如下: TinyFrame.Da ...
- [MCSM]伪随机数和伪随机数生成器
1. 几个问题 为什么需要随机数? 伪随机数伪在哪里? 为何要采用伪随机数代替随机数?这种代替是否有不利影响? 如何产生(伪)随机数? 以下内容将围绕这几个问题依次说明. 2. 参考 http://e ...
- 搭建emacs的go编程语言环境
关于emacs就不说明了,直接切入主题.关于我的emacs配置,可以直接参考GitHub上的lienhua34/myemacs-conf. go-mode 安装 关于go-mode的安装,可以直接参考 ...