前边总结了线性SVM,最终转化为一个QP问题来求解。后来又考虑到非线性SVM,如果特征特别特别多的话,直接使用QP的话求解不了,我们经过一系列的转化,把这一问题转化为训练集大小n量级的QP问题。

http://www.cnblogs.com/futurehau/p/6143178.html

在之前的基础之上,我们继续学习,引入核函数的概念,完全避免了特征数目量级的计算问题。接下来依次分析polynomial Kernel, Gaussian Kernel,并对他们进行对比分析。

一、Kernel 的引入

  之前我们得到对偶问题的QP形式:

  

  这似乎是一个n量级的问题,似乎和特征的个数无关,但是仔细一看,Q矩阵每一项的求解涉及到Z空间的内积,这就是特征个数量级的一个操作。所以我们从这里入手,想想怎样可以简化Z空间内积的计算呢?

  以二次变换为例,我们把X空间映射到Z空间,我们现在看看Z空间上的内积表达式是什么,可以怎么转换到X空间上。

  

  好了,我们发现Z空间上的内积刚好可以转换为X空间上的内积。所以我们就想,我们不需要显示的去先把X空间上的数据计算到空间上,然后训练参数,我们可以直接使用X空间上的参数来计算即可,这样大大降       低了我们的计算复杂度。

  

  这样,上述的转换就叫做Kernel函数。它把之前变换后的空间Z上的内积运算转换为原空间上的内积运算。

  我们再回过头来看看之前的对偶QP问题,Z空间上的哪些内积运算可以转换到X空间上呢?

  

  这样一来,所有的训练,测试都没有直接在Z空间上进行内积运算,所有运算都转换到了X空间上。这样所有运算就和你的特征维度没有关系了。

二、polynomial Kernel

  之前的例子使用的转换系数都是1,那么有没有其他的系数呢?

  加入我们改变一下系数,就能够得到不同形式的核函数。

  

  这些不同形式的核函数都把X映射到同一个Z空间,但区别是内积不同,那么几何定义就不一样了,那么分类的Margin就不同,这样对我们的分类效果就会有很大影响。

  同样,我们列举这些 polynomial:

  

三、Gaussian Kernel

  之前,都是一些有限维度的转换,那么可以可以做到无限多维度的转化呢?借助于exp函数的泰勒展开可以实现。厉害!

  

  这样我们得到Gaussian Kernel:

  

  

  

  如图所示,就是一些列高斯函数的线性组合,如果是正样本,就拔高,如果是负样本,就拖下,随后得到一个能够正确分类的超平面。

  可以看到,g(svm)就是一系列中心在Support Vector上的高斯函数的线性组合。所以gaussian kernel也叫RBF

  注意gama较大的时候还是有可能overfit的。

四、Comparison of Kernels

  4.1 Linear Kernel:

   

  4.2 polynomial kernel: ,一般用在小Q的时候

   

  4.3 Gaussian Kernel: 

   

  4.4 其他kernel

  kernel其实代表了Z空间向量的相似性,但并不是所有可以表示相似性的都可以写为kernel,kernel 需要满足以下条件:

  

  

针对可能存在的SVM过拟合问题,接下来讨论 soft margin SVM。http://www.cnblogs.com/futurehau/p/6165839.html

  

SVM2---核函数的引入的更多相关文章

  1. 6. 支持向量机(SVM)核函数

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  2. SVM学习(续)核函数 & 松弛变量和惩罚因子

    SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...

  3. 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)

    SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...

  4. 核型SVM

    (本文内容和图片来自林轩田老师<机器学习技法>) 1. 核技巧引入 如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SV ...

  5. SVM学习(续)

    SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...

  6. 【转】 SVM算法入门

    课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Supp ...

  7. 深入理解图优化与g2o:图优化篇

    前言 本节我们将深入介绍视觉slam中的主流优化方法——图优化(graph-based optimization).下一节中,介绍一下非常流行的图优化库:g2o. 关于g2o,我13年写过一个文档,然 ...

  8. SVM算法入门

    转自:http://blog.csdn.net/yangliuy/article/details/7316496SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当 ...

  9. 支持向量机(SVM)简介

    主要内容 一:SVM简介 二:线性分类 三:分类间隔 四:核函数 五:松弛变量 SVM简介 支持向量机(support vector Machine)是由Cortes和Vapnik于1995年首先提出 ...

  10. 支撑向量机(SVM)

    转载自http://blog.csdn.net/passball/article/details/7661887,写的很好,虽然那人也是转了别人的做了整理(最原始文章来自http://www.blog ...

随机推荐

  1. yii框架便利类CVarDumper使用

    1.类文件位置:path/to/yiiframework/utils/CVarDumper.php 2.作用:CVarDumper is intended to replace the buggy P ...

  2. 关于CSS的那些事?

    关于CSS的那些事? 它有精准定位与排版,使得网页布局.信息排版一目了然:它有多姿多彩的样式属性,使得网页中各元素千变万化:它有神奇的渲染天赋,使得网页有了如诗如画.别具一格的魅力.你知道它了吗?没错 ...

  3. PHP curl传 json字符串

    $ch = curl_init(); curl_setopt($ch, CURLOPT_POST, 1); curl_setopt($ch, CURLOPT_URL, $url); curl_seto ...

  4. 九度oj 题目1087:约数的个数

    题目链接:http://ac.jobdu.com/problem.php?pid=1087 题目描述: 输入n个整数,依次输出每个数的约数的个数 输入: 输入的第一行为N,即数组的个数(N<=1 ...

  5. 深入理解Java内存模型(一)——基础(转)

    转自程晓明的"深入理解Java内存模型"的博客 http://www.infoq.com/cn/articles/java-memory-model-1 并发编程模型的分类 在并发 ...

  6. 基于SVG的web页面图形绘制API介绍

    转自:http://blog.csdn.net/jia20003/article/details/9185449 一:什么是SVG SVG是1999由W3C发布的2D图形描述语言,纯基于XML格式的标 ...

  7. FullCalendar只可以从外部拖入,内部不能互相拖动

    startDrag: function(ev) { if(ev.originalEvent.initEvent){ return; } if (!this.isListening) { // star ...

  8. SQL Server 2012 配置数据库邮件

    发送和接受邮箱不能用QQ邮箱,可以用163网易邮箱,同时要求要发送邮件的计算机能上外网 查看163网易邮箱的发送和接收服务器的方法如下 在数据库的管理中,右击数据库邮件,选择配置数据库邮件 出现对话框 ...

  9. 钉钉的收费 [钉钉深圳研发团队 denny/2016.01.06/ 59888745@qq.com]

    普通用户(个人) 团队 企业 1.免费额度为每月通话100分钟.每天发DING 5次. 1.   每月通话300分钟,每天发DING   10次. 2.   群组最多可达1500人 1.   该公司所 ...

  10. Bellman算法

    Bellman算法 当图有负圈的时候可以用这个判断最短路! [时间复杂度]O(\(nm\)) &代码: #include <bits/stdc++.h> using namespa ...