codeforces 682D(DP)
题目链接:http://codeforces.com/contest/682/problem/D
思路:dp[i][j][l][0]表示a串前i和b串前j利用a[i] == b[j]所得到的最长子序列,
dp[i][j][l][1]表示a串前i和b串前j不利用a[i] == b[j]所得到的最长子序列,
所以,dp[i][j][l][0] = max(dp[i-1][j-1][l][0] ,max(dp[i-1][j-1][l-1][0],dp[i-1][j-1][l-1][1])) + 1
dp[i][j][l][1] = max(max(dp[i-1][j][l][0] ,dp[i-1][j][l][1]),max(dp[i][j-1][l][0] ,dp[i][j-1][l][1]))
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e3 + 3;
char a[N],b[N];
int n,m,k;
int dp[N][N][11][2];
int main()
{
scanf("%d %d %d",&n,&m,&k);
scanf("%s %s",a+1,b+1);
for(int i = 1 ;i <= n ;i++)
{
for(int j = 1 ;j <= m ;j++)
{
for(int l = 1 ;l <= k ;l++)
{
if(a[i] == b[j])
dp[i][j][l][0] = max(dp[i-1][j-1][l][0] ,max(dp[i-1][j-1][l-1][0],dp[i-1][j-1][l-1][1])) + 1;
dp[i][j][l][1] = max(max(dp[i-1][j][l][0] ,dp[i-1][j][l][1]),max(dp[i][j-1][l][0] ,dp[i][j-1][l][1]));
}
}
}
printf("%d\n",max(dp[n][m][k][0] ,dp[n][m][k][1]));
return 0;
}
codeforces 682D(DP)的更多相关文章
- Codeforces 1142D(dp)
题目传送 先给出设计dp的结论: dp[i][j]:以第i个位置.以rankj的数拓展出去的方案数.意会一下,我实在想不好语言-- 其中所谓rankj=真·rank%11 找到拓展的规律,转移也就顺理 ...
- Codeforces 1131G(dp)
传送门 与Codeforces1107G一起食用 思路 想到要用dp--然后常规地设dp[i]为推倒前i个牌的最小花费 有两种情况:一是当前这个推,二是不推而被别人推.对于第一种,需要找到这个左推(因 ...
- Codeforces 1107F(dp)
怎么就没人解释一下为啥用b排序可以保证正确性呢……太菜了,理解了好久. 时间流逝价值会丢失的背包,类似题洛谷1417 本题与洛谷1417不同之处在于流逝是有截止的. 1.这个dp[j]的含义是:最后跑 ...
- Codeforces 1107G(dp)
1.答案要取连续的区间疯狂暗示线段树. 2.外层枚举r,内层枚举l显然过于暴力. 3.考虑内层的优化.dp[i]:以第i位为结尾的答案(长度大于1的).dp[i] = max(第一种情况,第二种情况) ...
- codeforces 666A (DP)
题目链接:http://codeforces.com/problemset/problem/666/A 思路:dp[i][0]表示第a[i-1]~a[i]组成的字符串是否可行,dp[i][1]表示第a ...
- Codeforces 1144G(dp)
据说这题是种dp的套路?然后被我国红名神仙(南大Roundgod)贪心了,不过思路上非常相近了,故而可贪吧. 设的dp[i][0]是:如果把第i个数放在上升序列里了,那么下降序列结尾的那个最大是多少: ...
- Codeforces 1152D(dp)
要点 寻找最多边的匹配的结论:贪心地从叶子开始找,最后答案都是奇数层下边的那条边. 设\(dp[i][j]\)表示当前长度为\(i\),平衡度为\(j\),平衡度为(数量减去)数量. 增加左右括号转移 ...
- Three displays CodeForces - 987C (dp)
C. Three displays time limit per test 1 second memory limit per test 256 megabytes input standard in ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
随机推荐
- noi 2728 摘花生
题目链接: 很像上一题,加上自己本身,选最优值. http://noi.openjudge.cn/ch0206/2728/ http://paste.ubuntu.com/23402493/
- CSS 高级语法 ---- 继承和选择器的分组
1. 选择器的分组 ————————————————————————— 可以对选择器进行分组,被分组的选择器享用共同的声明. h1,h2,h3,h4,h5,h6 { color: green; ...
- 使用ajax登录格式
登录页面: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w ...
- 【iOS】我的Objective-C学习笔记
1.代码中增加标记 #pragma mark - #pragma mark 2.点语法 Person *p = [Person new]; // 点语法的本质还是方法调用 p.age = 10; // ...
- jQuery 效果 —— 隐藏和显示
jQuery 效果 -- 隐藏和显示 1.隐藏和显示 (1)在jQuery中我们可以使用hide()和show()分别隐藏和显示HTML元素: //隐藏元素 $("button") ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- Calendar日历小程序
//有待完善,有点bugpackage com.sunshine.framework.calendar.model;import java.util.Calendar;/** * * <p> ...
- hdu4511小明系列故事——女友的考验(ac自动机+最短路)
链接 预处理出来任意两点的距离,然后可以顺着trie树中的节点走,不能走到不合法的地方,另开一维表示走到了哪里,依次来更新. 注意判断一下起点是不是合法. #include <iostream& ...
- Android 利用xUtils框架实现对sqllite的增删改查
首先下载xUtils,下载地址:https://github.com/wyouflf/xUtils 把下载好的文件压缩,把里面的jar包拷进项目中如图所示: 这里新建一个User类进行测试增删改查 ...
- (转)linux grep 正则表达式
转自:http://www.cnblogs.com/xiaouisme/archive/2012/11/09/2762543.html -------------------------------- ...