题目链接

题意:两个队伍,有一些边相连,问最大组对数以及最多女生数量

分析:费用流模板题,设置两个超级源点和汇点,边的容量为1,费用为男生数量.建边不能重复建边否则会T.zkw费用流在稠密图跑得快,普通的最小费用最大流也能过,只是相对来说慢了点

#include <bits/stdc++.h>

const int N = 5e2 + 5;
const int INF = 0x3f3f3f3f;
struct Min_Cost_Max_Flow {
struct Edge {
int from, to, cap, flow, cost;
};
std::vector<Edge> edges;
std::vector<int> G[N];
bool vis[N];
int d[N], p[N], a[N];
int n, m; void init(int n) {
this->n = n;
for (int i=0; i<=n; ++i) {
G[i].clear ();
}
edges.clear ();
}
void add_edge(int from, int to, int cap, int cost) {
edges.push_back ((Edge) {from, to, cap, 0, cost});
edges.push_back ((Edge) {to, from, 0, 0, -cost});
m = edges.size ();
G[from].push_back (m - 2);
G[to].push_back (m - 1);
}
bool SPFA(int s, int t, int &flow, int &cost) {
memset (d, INF, sizeof (d));
memset (vis, false, sizeof (vis));
memset (p, -1, sizeof (p));
d[s] = 0; vis[s] = true; p[s] = 0; a[s] = INF; std::queue<int> que; que.push (s);
while (!que.empty ()) {
int u = que.front (); que.pop ();
vis[u] = false;
for (int i=0; i<G[u].size (); ++i) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = std::min (a[u], e.cap - e.flow);
if (!vis[e.to]) {
vis[e.to] = true;
que.push (e.to);
}
}
}
} if (d[t] == INF) {
return false;
}
flow += a[t];
cost += d[t] * a[t];
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
void run(int s, int t, int &flow, int &cost) {
flow = cost = 0;
while (SPFA (s, t, flow, cost)); printf ("%d %d\n", flow, 2 * flow - cost);
for (int i=0; i<edges.size (); i+=2) {
if (edges[i].from == s || edges[i].to == t || edges[i].flow == 0) {
continue;
}
printf ("%d %d\n", edges[i].from, edges[i].to);
}
}
};
Min_Cost_Max_Flow mcmf;
char group[N], sex[N];
bool list[N];
int n, m; int main() {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d", &n);
scanf ("%s", group + 1);
scanf ("%s", sex + 1); mcmf.init (n + 1);
int s = 0, t = n + 1;
for (int i=1; i<=n; ++i) {
if (group[i] == '0') {
mcmf.add_edge (s, i, 1, 0);
} else {
mcmf.add_edge (i, t, 1, 0);
}
int m; scanf ("%d", &m);
memset (list, false, sizeof (list));
for (int j=1; j<=m; ++j) {
int v; scanf ("%d", &v);
list[v] = true;
}
if (group[i] == '1') {
continue;
}
int cost = (sex[i] == '1');
for (int j=1; j<=n; ++j) {
if (list[j] || group[i] == group[j]) {
continue;
}
mcmf.add_edge (i, j, 1, cost + (sex[j] == '1'));
}
}
int flow, cost;
mcmf.run (s, t, flow, cost);
} return 0;
}

  

费用流 ZOJ 3933 Team Formation的更多相关文章

  1. ZOJ 3933 Team Formation

    费用流裸题......比赛的时候少写了一句话....导致增加了很多无用的边一直在TLE #include<cstdio> #include<cstring> #include& ...

  2. 位运算 ZOJ 3870 Team Formation

    题目传送门 /* 题意:找出符合 A^B > max (A, B) 的组数: 位运算:异或的性质,1^1=0, 1^0=1, 0^1=1, 0^0=0:与的性质:1^1=1, 1^0=0, 0^ ...

  3. Zoj 3870——Team Formation——————【技巧,规律】

    Team Formation Time Limit: 3 Seconds      Memory Limit: 131072 KB For an upcoming programming contes ...

  4. ZOJ 3870 Team Formation 贪心二进制

                                                    B - Team Formation Description For an upcoming progr ...

  5. ZOJ 3870 Team Formation 位运算 位异或用与运算做的

    For an upcoming programming contest, Edward, the headmaster of Marjar University, is forming a two-m ...

  6. ZOJ - 3870 Team Formation(异或)

    题意:给定N个数,求这N个数中满足A ⊕ B > max{A, B})的AB有多少对.(A,B是N中的某两个数) 分析: 1.异或,首先想到转化为二进制. eg:110011(A)和 1(B)- ...

  7. zoj The 12th Zhejiang Provincial Collegiate Programming Contest Team Formation

    http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5494 The 12th Zhejiang Provincial ...

  8. ZOJ 3870:Team Formation(位运算&思维)

    Team Formation Time Limit: 2 Seconds Memory Limit: 131072 KB For an upcoming programming contest, Ed ...

  9. UVALive 4863 Balloons 贪心/费用流

    There will be several test cases in the input. Each test case will begin with a line with three inte ...

随机推荐

  1. August 24th 2016 Week 35th Wednesday

    Storms make trees take deeper roots. 暴风雨能使大树的根扎得更深. If the trees already have deep roots, then the s ...

  2. 苹果应用 Windows 申请 普通证书 和Push 证书 Hbuilder 个推

    最近使用Hbuilder 进行了HTML5开发,因为 HTML5 可以放在android 机器上,也可以放到 IOS机器上,所以很感兴趣,于是开发了一个小应用, 不过问题接着来了: 图1 如图所示:当 ...

  3. 浅析 - iOS应用程序的生命周期

    1.应用程序的状态 状态如下: Not running  未运行  程序没启动 Inactive          未激活        程序在前台运行,不过没有接收到事件.在没有事件处理情况下程序通 ...

  4. 用spring+hibernate+struts 项目记录以及常用的用法进等

    一.hibernate1. -----BaseDao------ // 容器注入 private SessionFactory sessionFactory; public void setSessi ...

  5. Jmeter测试JDBC

    Datebase Driver class Database URL MySQL com.mysql.jdbc.Driver jdbc:mysql://host:port/{dbname} Postg ...

  6. Java并发编程实现概览

    并发概览 >>同步 如何同步多个线程对共享资源的访问是多线程编程中最基本的问题之一.当多个线程并发访问共享数据时会出现数据处于计算中间状态或者不一致的问题,从而影响到程序的正确运行.我们通 ...

  7. SQLAlchemy ORM之建表与查询

    作了最基本的操作,找找感觉.. #coding=utf-8 from datetime import datetime from sqlalchemy import (MetaData, Table, ...

  8. poj 1724:ROADS(DFS + 剪枝)

    ROADS Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10777   Accepted: 3961 Descriptio ...

  9. Linux进程状态 ( Linux Process State Codes)

    进程状态代码及说明: STATE代码 说明 D 不可中断的睡眠. 通常是处于I/O之中. R 运行中/可运行. 正处于运行队列中. S 可中断的睡眠. 等待某事件发生. T 已停止. 可能是因为she ...

  10. HDU2296 Ring(AC自动机 DP)

    dp[i][j]表示行走i步到达j的最大值,dps[i][j]表示对应的串 状态转移方程如下: dp[i][chi[j][k]] = min(dp[i - 1][j] + sum[chi[j][k]] ...