Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1902    Accepted Submission(s): 540

Problem Description
Little
John is herding his father's cattles. As a lazy boy, he cannot tolerate
chasing the cattles all the time to avoid unnecessary omission.
Luckily, he notice that there were N trees in the meadow numbered from 1
to N, and calculated their cartesian coordinates (Xi, Yi). To herding
his cattles safely, the easiest way is to connect some of the trees
(with different numbers, of course) with fences, and the close region
they formed would be herding area. Little John wants the area of this
region to be as small as possible, and it could not be zero, of course.
 
Input
The first line contains the number of test cases T( T<=25 ). Following lines are the scenarios of each test case.
The
first line of each test case contains one integer N( 1<=N<=100 ).
The following N lines describe the coordinates of the trees. Each of
these lines will contain two float numbers Xi and Yi( -1000<=Xi,
Yi<=1000 ) representing the coordinates of the corresponding tree.
The coordinates of the trees will not coincide with each other.
 
Output
For
each test case, please output one number rounded to 2 digits after the
decimal point representing the area of the smallest region. Or output
"Impossible"(without quotations), if it do not exists such a region.
 
Sample Input
1
4
-1.00 0.00
0.00 -3.00
2.00 0.00
2.00 2.00
 
Sample Output
2.00
 
Source
 思路:在n个点里面找出3个点,使三角形的面积最小
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
#include <cstring>
#include <cmath>
#include <iostream>
#define INF 1 << 25
#define eps 1e-8
using namespace std;
struct node{
double x,y;
}a[];
int n;
int check(node a,node b,node c)//向量判断是否3点在同一直线
{
node v1, v2;
v1.x = a.x - b.x;
v1.y = a.y - b.y;
v2.x = c.x - b.x;
v2.y = c.y - b.y;
if(fabs(v1.x * v2.y - v2.x * v1.y) < eps ) return ;
else return ;
}
double calc(node a,node b,node c)//求面积
{
double res = ;
res = fabs(a.x * b.y + b.x * c.y + c.x * a.y - b.x * a.y - c.x * b.y - a.x * c.y);
return res/2.0;
}
void solve()
{
scanf("%d",&n);
for(int i = ; i <=n ; ++i)
scanf("%lf%lf",&a[i].x,&a[i].y);
if(n == || n == ) { printf("Impossible\n"); return; }
double ans = INF;
for(int i = ; i <= n ;++i)//暴力枚举
for(int j = i + ; j <=n ; ++j)
for(int k = j + ; k <= n ; ++k)
if(check(a[i],a[j],a[k])){
double now = calc(a[i],a[j],a[k]);
if(now < ans) ans = now;
}
// cout << ans <<endl;
if(ans != INF)
printf("%.2f\n",ans);
else printf("Impossible\n");
}
int main()
{
ios::sync_with_stdio();
int t;
scanf("%d",&t);
while(t--)
solve();
return ;
}

Herding的更多相关文章

  1. hduoj 4706 Herding 2013 ACM/ICPC Asia Regional Online —— Warmup

    hduoj 4706 Children's Day 2013 ACM/ICPC Asia Regional Online —— Warmup Herding Time Limit: 2000/1000 ...

  2. HDU 4709:Herding

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  3. HDU Herding

    F - Herding Time Limit:1000MS       Memory Limit:32768KB      64bit IO Format:%I64d & %I64u Subm ...

  4. Herding(hdu4709)三点运用行列式求面积

    Herding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. HDU 4709 Herding (枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  6. HDUOJ---(4708)Herding

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  7. hdu 4709:Herding(叉积求三角形面积+枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  8. hdu - 4709 - Herding

    题意:给出N个点的坐标,从中取些点来组成一个多边形,求这个多边形的最小面积,组不成多边形的输出"Impossible"(测试组数 T <= 25, 1 <= N < ...

  9. hdu 4709 Herding hdu 2013 热身赛

    题意:给出笛卡尔坐标系上 n 个点,n不大于100,求出这些点中能围出的最小面积. 可以肯定的是三个点围成的面积是最小的,然后就暴力枚举,计算任意三点围成的面积.刚开始是求出三边的长,然后求面积,运算 ...

随机推荐

  1. 20145213《Java程序设计》第五周学习总结补充

    20145213<Java程序设计>第五周学习总结补充 教材学习内容总结 欠的账都是要还的!第九章的内容躲过对酒当歌的夜,躲不过四下无人的街.由于第五周贪玩,疏忽冷落了Collection ...

  2. RAD Studio/Delphi 2010 3615下载+破解

    RAD Studio/Delphi 2010 3615下载+破解 官方下载地址: http://altd.embarcadero.com/download/RADStudio2010/delphicb ...

  3. Spring面向切面编程(AOP)方式二

    使用注解进行实现:减少xml文件的配置. 1 建立切面类 不需要实现任何特定接口,按照需要自己定义通知. package org.guangsoft.utils; import java.util.D ...

  4. UISearchController Attempting to load the view of a view controller while it is deallocating is not allowed and may result in undefined behavior

    Attempting to load the view of a view controller while it is deallocating is not allowed and may res ...

  5. LinkIssue: Error 'LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or cor

    参考:http://blog.csdn.net/junjiehe/article/details/16888197 使用VisualStudio 编译链接中可能出现如下错误: LINK : fatal ...

  6. NYOJ之XX和OO

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAskAAAI0CAIAAABgWyN9AAAgAElEQVR4nO3dPW7jyt4n4NmEcy/EaW

  7. 关于java中的异常问题 1

    1.首先参考一下关于java异常处理方面的知识 查看博客http://lavasoft.blog.51cto.com/62575/18920/ 这里介绍的很好,下面从中学习到一些东西,摘抄如下: 1. ...

  8. IT人学习方法论(二):学习误区

    之前我们讨论了“学什么”的问题,今天我们来谈一谈“怎么学”的问题.磨刀不误砍柴工,我们要提高学习效率,首先需要找到自己学习方法上的误区. 一些常见的学习方法误区 1)资料导向型 现在就停止阅读这篇文章 ...

  9. Arch Linux Installation Guide

    Arch Linux Installation Guide   timedatectl set-ntp true   sed -i '/Score/{/China/!{n;s/^/#/}}' /etc ...

  10. Linux Shell 高级编程技巧2----shell工具

    2.shell工具    2.1.日志文件        简介            创建日志文件是很重要的,记录了重要的信息.一旦出现错误,这些信息对于我们排错是非常有用的:监控的信息也可以记录到日 ...