1.softmax从零实现

from mxnet.gluon import data as gdata
from sklearn import datasets
from mxnet import nd,autograd
# 加载数据集
digits = datasets.load_digits()
features,labels = nd.array(digits['data']),nd.array(digits['target'])
print(features.shape,labels.shape)
labels_onehot = nd.one_hot(labels,10)
print(labels_onehot.shape)
(1797, 64) (1797,)
(1797, 10)
class softmaxClassifier:
def __init__(self,inputs,outputs):
self.inputs = inputs
self.outputs = outputs self.weight = nd.random.normal(scale=0.01,shape=(inputs,outputs))
self.bias = nd.zeros(shape=(1,outputs))
self.weight.attach_grad()
self.bias.attach_grad() def forward(self,x):
output = nd.dot(x,self.weight) + self.bias
return self._softmax(output) def _softmax(self,x):
step1 = x.exp()
step2 = step1.sum(axis=1,keepdims=True)
return step1 / step2 def _bgd(self,params,learning_rate,batch_size):
'''
批量梯度下降
'''
for param in params: # 直接使用mxnet的自动求梯度
param[:] = param - param.grad * learning_rate / batch_size def loss(self,y_pred,y):
return nd.sum((-y * y_pred.log())) / len(y) def dataIter(self,x,y,batch_size):
dataset = gdata.ArrayDataset(x,y)
return gdata.DataLoader(dataset,batch_size,shuffle=True) def fit(self,x,y,learning_rate,epoches,batch_size):
for epoch in range(epoches):
for x_batch,y_batch in self.dataIter(x,y,batch_size):
with autograd.record():
y_pred = self.forward(x_batch)
l = self.loss(y_pred,y_batch)
l.backward()
self._bgd([self.weight,self.bias],learning_rate,batch_size)
if epoch % 50 == 0:
y_all_pred = self.forward(x)
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,self.loss(y_all_pred,y),self.accuracyScore(y_all_pred,y))) def predict(self,x):
y_pred = self.forward(x)
return y_pred.argmax(axis=0) def accuracyScore(self,y_pred,y):
acc_sum = (y_pred.argmax(axis=1) == y.argmax(axis=1)).sum().asscalar()
return acc_sum / len(y)
sfm_clf = softmaxClassifier(64,10)
sfm_clf.fit(features,labels_onehot,learning_rate=0.1,epoches=500,batch_size=200)
epoch:50,loss:
[1.9941667]
<NDArray 1 @cpu(0)>,accuracy:0.3550361713967724
epoch:100,loss:
[0.37214527]
<NDArray 1 @cpu(0)>,accuracy:0.9393433500278241
epoch:150,loss:
[0.25443634]
<NDArray 1 @cpu(0)>,accuracy:0.9549248747913188
epoch:200,loss:
[0.20699367]
<NDArray 1 @cpu(0)>,accuracy:0.9588202559821926
epoch:250,loss:
[0.1799827]
<NDArray 1 @cpu(0)>,accuracy:0.9660545353366722
epoch:300,loss:
[0.1619963]
<NDArray 1 @cpu(0)>,accuracy:0.9677239844184753
epoch:350,loss:
[0.14888664]
<NDArray 1 @cpu(0)>,accuracy:0.9716193656093489
epoch:400,loss:
[0.13875261]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:450,loss:
[0.13058177]
<NDArray 1 @cpu(0)>,accuracy:0.9760712298274903
epoch:500,loss:
[0.12379646]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933
print('预测结果:',sfm_clf.predict(features[:10]))
print('真实结果:',labels[:10])
预测结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
真实结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>

2.使用mxnet实现softmax分类

from mxnet import gluon,nd,autograd,init
from mxnet.gluon import nn,trainer,loss as gloss,data as gdata
# 定义模型
net = nn.Sequential()
net.add(nn.Dense(10)) # 初始化模型
net.initialize(init=init.Normal(sigma=0.01)) # 损失函数
loss = gloss.SoftmaxCrossEntropyLoss(sparse_label=False) # 优化算法
optimizer = trainer.Trainer(net.collect_params(),'sgd',{'learning_rate':0.1}) # 训练
epoches = 500
batch_size = 200 dataset = gdata.ArrayDataset(features, labels_onehot)
data_iter = gdata.DataLoader(dataset,batch_size,shuffle=True)
for epoch in range(epoches):
for x_batch,y_batch in data_iter:
with autograd.record():
l = loss(net.forward(x_batch), y_batch).sum() / batch_size
l.backward()
optimizer.step(batch_size)
if epoch % 50 == 0:
y_all_pred = net.forward(features)
acc_sum = (y_all_pred.argmax(axis=1) == labels_onehot.argmax(axis=1)).sum().asscalar()
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss(y_all_pred,labels_onehot).sum() / len(labels_onehot),acc_sum/len(y_all_pred)))
epoch:50,loss:
[2.1232333]
<NDArray 1 @cpu(0)>,accuracy:0.24652198107957707
epoch:100,loss:
[0.37193483]
<NDArray 1 @cpu(0)>,accuracy:0.9410127991096272
epoch:150,loss:
[0.25408813]
<NDArray 1 @cpu(0)>,accuracy:0.9543683917640512
epoch:200,loss:
[0.20680156]
<NDArray 1 @cpu(0)>,accuracy:0.9627156371730662
epoch:250,loss:
[0.1799252]
<NDArray 1 @cpu(0)>,accuracy:0.9666110183639399
epoch:300,loss:
[0.16203885]
<NDArray 1 @cpu(0)>,accuracy:0.9699499165275459
epoch:350,loss:
[0.14899409]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:400,loss:
[0.13890252]
<NDArray 1 @cpu(0)>,accuracy:0.9749582637729549
epoch:450,loss:
[0.13076076]
<NDArray 1 @cpu(0)>,accuracy:0.9755147468002225
epoch:500,loss:
[0.1239901]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933

从零和使用mxnet实现softmax分类的更多相关文章

  1. 从零和使用mxnet实现dropout

    需求: 从零和使用mxnet实现dropout 数据集: 使用load_digits()手写数字数据集 要求: 使用1个掩藏层n_hidden1 = 36,激活函数为relu,损失函数为softmax ...

  2. 学习笔记TF010:softmax分类

    回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广.函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率.分量为概率,C个分量和始终为1.每个样本必须属于某个输出类别 ...

  3. 从零和使用mxnet实现线性回归

    1.线性回归从零实现 from mxnet import ndarray as nd import matplotlib.pyplot as plt import numpy as np import ...

  4. 动手学深度学习7-从零开始完成softmax分类

    获取和读取数据 初始化模型参数 实现softmax运算 定义模型 定义损失函数 计算分类准确率 训练模型 小结 import torch import torchvision import numpy ...

  5. softmax分类算法原理(用python实现)

    逻辑回归神经网络实现手写数字识别 如果更习惯看Jupyter的形式,请戳Gitthub_逻辑回归softmax神经网络实现手写数字识别.ipynb 1 - 导入模块 import numpy as n ...

  6. gluon实现softmax分类FashionMNIST

    from mxnet import gluon,init from mxnet.gluon import loss as gloss,nn from mxnet.gluon import data a ...

  7. Keras 多层感知机 多类别的 softmax 分类模型代码

    Multilayer Perceptron (MLP) for multi-class softmax classification: from keras.models import Sequent ...

  8. tf.nn.softmax 分类

    tf.nn.softmax(logits,axis=None,name=None,dim=None) 参数: logits:一个非空的Tensor.必须是下列类型之一:half, float32,fl ...

  9. softmax实现cifar10分类

    将cifar10改成单一通道后,套用前面的softmax分类,分类率40%左右,想哭... .caret, .dropup > .btn > .caret { border-top-col ...

随机推荐

  1. Java8 新特性 Data Time API

    Java8新的日期类型 在Java8以前,Date日期API对我们非常的不友好,它无法表示日期,只能以毫秒的精试来表示时间,并且可以修改,他的线程还不是安全的.所以Java8中引入了全新的日期和时间A ...

  2. "中台"论再议

    前言:讲中台的太多了,好像似乎不提中台就没法在IT圈混,但对中台又缺少统一明确的定义,姑且听其言,择其精华.最近看到一篇将中台的,觉得还不错,记录下来,分享给大家. 硅谷的“中台论” 在国内创立智领云 ...

  3. 网络基础-------------给电脑设置IP

    ip 是每一台电脑进入互联网的一个必备钥匙,没有它就不能体会冲浪的乐趣,当我们使用电脑连接无线时我们就会被自动分配一个ip地址(DHCP),这样我们就可以凭借这个IPV4地址来进行冲浪了,但是自动分配 ...

  4. Appium+python自动化(四)- 如何查看程序所占端口号和IP(超详解)(番外篇)

    简介 这篇博文和分类看似没有多大关系,但是也是从上一篇衍生出来的产物,因为涉及到FQ工具Lantern,就算是给关注和支持的小伙伴们拓展一下眼界和知识面.而且好多人都阅读了上一篇没发现那个参考博客点不 ...

  5. vue cli 3 那些事儿

    配置 eslint 可在 package.json 中的 eslintConfig 中配置,比如允许在代码中使用 console,package.json 中配置如下 ... "eslint ...

  6. windows10下录屏

    windows10自带了录屏功能.运行win+G即可打开.如果出现错误,可以运行如下PS脚本. https://files.cnblogs.com/files/mqingqing123/reinsta ...

  7. Blend Brush介绍

    原文:Blend Brush介绍 这篇文章会介绍 Blend怎么设置Brush 全局画刷 1)blend面板的介绍 这5个rectangle分别对应 blend中的 5个设置 1 设置无颜色 2 设置 ...

  8. Ubuntu 16.04 ssh协议连接root管理员用户

    首先先给自己的Ubuntu 创建一个root密码.毕竟登陆的时候都是用户登陆的. 在 命令行中输入  sudo passwd // 设置root密码 password for func : //输入用 ...

  9. c#语法复习总结(2)-数据类型

    C#数据类型可以分值类型和引用类型.值类型,先说说一个概念 c#栈和堆. 一,栈和堆. 堆:在c里面叫堆,在c#里面其实叫托管堆.为什么叫托管堆,我们往下看. 栈:就是堆栈,因为和堆一起叫着别扭,就简 ...

  10. jquery点击放大图片

    参考地址:https://blog.csdn.net/qq_42249896/article/details/86569636 一.应用场景:点击图片可以对图片进行放大显示. 二.实现代码: 说明:我 ...