1.softmax从零实现

from mxnet.gluon import data as gdata
from sklearn import datasets
from mxnet import nd,autograd
# 加载数据集
digits = datasets.load_digits()
features,labels = nd.array(digits['data']),nd.array(digits['target'])
print(features.shape,labels.shape)
labels_onehot = nd.one_hot(labels,10)
print(labels_onehot.shape)
(1797, 64) (1797,)
(1797, 10)
class softmaxClassifier:
def __init__(self,inputs,outputs):
self.inputs = inputs
self.outputs = outputs self.weight = nd.random.normal(scale=0.01,shape=(inputs,outputs))
self.bias = nd.zeros(shape=(1,outputs))
self.weight.attach_grad()
self.bias.attach_grad() def forward(self,x):
output = nd.dot(x,self.weight) + self.bias
return self._softmax(output) def _softmax(self,x):
step1 = x.exp()
step2 = step1.sum(axis=1,keepdims=True)
return step1 / step2 def _bgd(self,params,learning_rate,batch_size):
'''
批量梯度下降
'''
for param in params: # 直接使用mxnet的自动求梯度
param[:] = param - param.grad * learning_rate / batch_size def loss(self,y_pred,y):
return nd.sum((-y * y_pred.log())) / len(y) def dataIter(self,x,y,batch_size):
dataset = gdata.ArrayDataset(x,y)
return gdata.DataLoader(dataset,batch_size,shuffle=True) def fit(self,x,y,learning_rate,epoches,batch_size):
for epoch in range(epoches):
for x_batch,y_batch in self.dataIter(x,y,batch_size):
with autograd.record():
y_pred = self.forward(x_batch)
l = self.loss(y_pred,y_batch)
l.backward()
self._bgd([self.weight,self.bias],learning_rate,batch_size)
if epoch % 50 == 0:
y_all_pred = self.forward(x)
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,self.loss(y_all_pred,y),self.accuracyScore(y_all_pred,y))) def predict(self,x):
y_pred = self.forward(x)
return y_pred.argmax(axis=0) def accuracyScore(self,y_pred,y):
acc_sum = (y_pred.argmax(axis=1) == y.argmax(axis=1)).sum().asscalar()
return acc_sum / len(y)
sfm_clf = softmaxClassifier(64,10)
sfm_clf.fit(features,labels_onehot,learning_rate=0.1,epoches=500,batch_size=200)
epoch:50,loss:
[1.9941667]
<NDArray 1 @cpu(0)>,accuracy:0.3550361713967724
epoch:100,loss:
[0.37214527]
<NDArray 1 @cpu(0)>,accuracy:0.9393433500278241
epoch:150,loss:
[0.25443634]
<NDArray 1 @cpu(0)>,accuracy:0.9549248747913188
epoch:200,loss:
[0.20699367]
<NDArray 1 @cpu(0)>,accuracy:0.9588202559821926
epoch:250,loss:
[0.1799827]
<NDArray 1 @cpu(0)>,accuracy:0.9660545353366722
epoch:300,loss:
[0.1619963]
<NDArray 1 @cpu(0)>,accuracy:0.9677239844184753
epoch:350,loss:
[0.14888664]
<NDArray 1 @cpu(0)>,accuracy:0.9716193656093489
epoch:400,loss:
[0.13875261]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:450,loss:
[0.13058177]
<NDArray 1 @cpu(0)>,accuracy:0.9760712298274903
epoch:500,loss:
[0.12379646]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933
print('预测结果:',sfm_clf.predict(features[:10]))
print('真实结果:',labels[:10])
预测结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
真实结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>

2.使用mxnet实现softmax分类

from mxnet import gluon,nd,autograd,init
from mxnet.gluon import nn,trainer,loss as gloss,data as gdata
# 定义模型
net = nn.Sequential()
net.add(nn.Dense(10)) # 初始化模型
net.initialize(init=init.Normal(sigma=0.01)) # 损失函数
loss = gloss.SoftmaxCrossEntropyLoss(sparse_label=False) # 优化算法
optimizer = trainer.Trainer(net.collect_params(),'sgd',{'learning_rate':0.1}) # 训练
epoches = 500
batch_size = 200 dataset = gdata.ArrayDataset(features, labels_onehot)
data_iter = gdata.DataLoader(dataset,batch_size,shuffle=True)
for epoch in range(epoches):
for x_batch,y_batch in data_iter:
with autograd.record():
l = loss(net.forward(x_batch), y_batch).sum() / batch_size
l.backward()
optimizer.step(batch_size)
if epoch % 50 == 0:
y_all_pred = net.forward(features)
acc_sum = (y_all_pred.argmax(axis=1) == labels_onehot.argmax(axis=1)).sum().asscalar()
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss(y_all_pred,labels_onehot).sum() / len(labels_onehot),acc_sum/len(y_all_pred)))
epoch:50,loss:
[2.1232333]
<NDArray 1 @cpu(0)>,accuracy:0.24652198107957707
epoch:100,loss:
[0.37193483]
<NDArray 1 @cpu(0)>,accuracy:0.9410127991096272
epoch:150,loss:
[0.25408813]
<NDArray 1 @cpu(0)>,accuracy:0.9543683917640512
epoch:200,loss:
[0.20680156]
<NDArray 1 @cpu(0)>,accuracy:0.9627156371730662
epoch:250,loss:
[0.1799252]
<NDArray 1 @cpu(0)>,accuracy:0.9666110183639399
epoch:300,loss:
[0.16203885]
<NDArray 1 @cpu(0)>,accuracy:0.9699499165275459
epoch:350,loss:
[0.14899409]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:400,loss:
[0.13890252]
<NDArray 1 @cpu(0)>,accuracy:0.9749582637729549
epoch:450,loss:
[0.13076076]
<NDArray 1 @cpu(0)>,accuracy:0.9755147468002225
epoch:500,loss:
[0.1239901]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933

从零和使用mxnet实现softmax分类的更多相关文章

  1. 从零和使用mxnet实现dropout

    需求: 从零和使用mxnet实现dropout 数据集: 使用load_digits()手写数字数据集 要求: 使用1个掩藏层n_hidden1 = 36,激活函数为relu,损失函数为softmax ...

  2. 学习笔记TF010:softmax分类

    回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广.函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率.分量为概率,C个分量和始终为1.每个样本必须属于某个输出类别 ...

  3. 从零和使用mxnet实现线性回归

    1.线性回归从零实现 from mxnet import ndarray as nd import matplotlib.pyplot as plt import numpy as np import ...

  4. 动手学深度学习7-从零开始完成softmax分类

    获取和读取数据 初始化模型参数 实现softmax运算 定义模型 定义损失函数 计算分类准确率 训练模型 小结 import torch import torchvision import numpy ...

  5. softmax分类算法原理(用python实现)

    逻辑回归神经网络实现手写数字识别 如果更习惯看Jupyter的形式,请戳Gitthub_逻辑回归softmax神经网络实现手写数字识别.ipynb 1 - 导入模块 import numpy as n ...

  6. gluon实现softmax分类FashionMNIST

    from mxnet import gluon,init from mxnet.gluon import loss as gloss,nn from mxnet.gluon import data a ...

  7. Keras 多层感知机 多类别的 softmax 分类模型代码

    Multilayer Perceptron (MLP) for multi-class softmax classification: from keras.models import Sequent ...

  8. tf.nn.softmax 分类

    tf.nn.softmax(logits,axis=None,name=None,dim=None) 参数: logits:一个非空的Tensor.必须是下列类型之一:half, float32,fl ...

  9. softmax实现cifar10分类

    将cifar10改成单一通道后,套用前面的softmax分类,分类率40%左右,想哭... .caret, .dropup > .btn > .caret { border-top-col ...

随机推荐

  1. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  2. Springboot2+SpringSecurity+Oauth2+Mysql数据库实现持久化客户端数据

    目录 介绍 建表,初始化数据 工程配置 Authorization Server - Spring Security配置 Authorization Server - 授权服务器 Resource S ...

  3. C#异步的世界【下】(转)

    接上篇:<C#异步的世界[上]> 上篇主要分析了async\await之前的一些异步模式,今天说异步的主要是指C#5的async\await异步.在此为了方便的表述,我们称async\aw ...

  4. 使用SonarQube和SonarQube Scanner分析项目

    一.概述 SonarQube的安装,请参考链接:https://www.cnblogs.com/xiao987334176/p/12011623.html 配置好sonar的服务端后,接下来就要使用s ...

  5. PHP小程序后端支付代码亲测可用

    小程序后端支付代码亲测可用 <?php namespace Home\Controller; use Think\Controller; class WechatpayController ex ...

  6. C# LDAP认证登录类参考

    public class LDAPHelper     {         private DirectoryEntry _objDirectoryEntry;         /// <sum ...

  7. Git本地有未提交文件,直接拉取远端最新版本

    git pull = git fetch + git merge 1.修改不同的文件: 用户D和用户L在本地提交中修改了不同的文件,如果用户D将改动推送到服务器后,用户L再推送就会遇到非快进式推送错误 ...

  8. 【转载】C#中Datatable修改列名

    在C#的数据表格DataTable操作过程中,有时候会遇到修改DataTable数据表格的列名的需求,其实C#中的DataTable的列名支持手动修改调整,可以通过DataTable类的Columns ...

  9. javascript 函数表达和闭包

    函数表达式和闭包 针对JS高级程序设计这本书,主要是理解概念,大部分要点源自书内.写这个主要是当个笔记加总结 存在的问题请大家多多指正! 定义函数的两种方法 函数声明: function functi ...

  10. Android 工作流提交审批填写审批意见PopWindow工具类

    公司的项目中几乎都会有走工作流这个环节,为了提高效率,现在特意把弹出的填写审批意见PopWindow改转成工具类,提高效率,免得下次又得整.先看运行效果.