1.softmax从零实现

from mxnet.gluon import data as gdata
from sklearn import datasets
from mxnet import nd,autograd
# 加载数据集
digits = datasets.load_digits()
features,labels = nd.array(digits['data']),nd.array(digits['target'])
print(features.shape,labels.shape)
labels_onehot = nd.one_hot(labels,10)
print(labels_onehot.shape)
(1797, 64) (1797,)
(1797, 10)
class softmaxClassifier:
def __init__(self,inputs,outputs):
self.inputs = inputs
self.outputs = outputs self.weight = nd.random.normal(scale=0.01,shape=(inputs,outputs))
self.bias = nd.zeros(shape=(1,outputs))
self.weight.attach_grad()
self.bias.attach_grad() def forward(self,x):
output = nd.dot(x,self.weight) + self.bias
return self._softmax(output) def _softmax(self,x):
step1 = x.exp()
step2 = step1.sum(axis=1,keepdims=True)
return step1 / step2 def _bgd(self,params,learning_rate,batch_size):
'''
批量梯度下降
'''
for param in params: # 直接使用mxnet的自动求梯度
param[:] = param - param.grad * learning_rate / batch_size def loss(self,y_pred,y):
return nd.sum((-y * y_pred.log())) / len(y) def dataIter(self,x,y,batch_size):
dataset = gdata.ArrayDataset(x,y)
return gdata.DataLoader(dataset,batch_size,shuffle=True) def fit(self,x,y,learning_rate,epoches,batch_size):
for epoch in range(epoches):
for x_batch,y_batch in self.dataIter(x,y,batch_size):
with autograd.record():
y_pred = self.forward(x_batch)
l = self.loss(y_pred,y_batch)
l.backward()
self._bgd([self.weight,self.bias],learning_rate,batch_size)
if epoch % 50 == 0:
y_all_pred = self.forward(x)
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,self.loss(y_all_pred,y),self.accuracyScore(y_all_pred,y))) def predict(self,x):
y_pred = self.forward(x)
return y_pred.argmax(axis=0) def accuracyScore(self,y_pred,y):
acc_sum = (y_pred.argmax(axis=1) == y.argmax(axis=1)).sum().asscalar()
return acc_sum / len(y)
sfm_clf = softmaxClassifier(64,10)
sfm_clf.fit(features,labels_onehot,learning_rate=0.1,epoches=500,batch_size=200)
epoch:50,loss:
[1.9941667]
<NDArray 1 @cpu(0)>,accuracy:0.3550361713967724
epoch:100,loss:
[0.37214527]
<NDArray 1 @cpu(0)>,accuracy:0.9393433500278241
epoch:150,loss:
[0.25443634]
<NDArray 1 @cpu(0)>,accuracy:0.9549248747913188
epoch:200,loss:
[0.20699367]
<NDArray 1 @cpu(0)>,accuracy:0.9588202559821926
epoch:250,loss:
[0.1799827]
<NDArray 1 @cpu(0)>,accuracy:0.9660545353366722
epoch:300,loss:
[0.1619963]
<NDArray 1 @cpu(0)>,accuracy:0.9677239844184753
epoch:350,loss:
[0.14888664]
<NDArray 1 @cpu(0)>,accuracy:0.9716193656093489
epoch:400,loss:
[0.13875261]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:450,loss:
[0.13058177]
<NDArray 1 @cpu(0)>,accuracy:0.9760712298274903
epoch:500,loss:
[0.12379646]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933
print('预测结果:',sfm_clf.predict(features[:10]))
print('真实结果:',labels[:10])
预测结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>
真实结果:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
<NDArray 10 @cpu(0)>

2.使用mxnet实现softmax分类

from mxnet import gluon,nd,autograd,init
from mxnet.gluon import nn,trainer,loss as gloss,data as gdata
# 定义模型
net = nn.Sequential()
net.add(nn.Dense(10)) # 初始化模型
net.initialize(init=init.Normal(sigma=0.01)) # 损失函数
loss = gloss.SoftmaxCrossEntropyLoss(sparse_label=False) # 优化算法
optimizer = trainer.Trainer(net.collect_params(),'sgd',{'learning_rate':0.1}) # 训练
epoches = 500
batch_size = 200 dataset = gdata.ArrayDataset(features, labels_onehot)
data_iter = gdata.DataLoader(dataset,batch_size,shuffle=True)
for epoch in range(epoches):
for x_batch,y_batch in data_iter:
with autograd.record():
l = loss(net.forward(x_batch), y_batch).sum() / batch_size
l.backward()
optimizer.step(batch_size)
if epoch % 50 == 0:
y_all_pred = net.forward(features)
acc_sum = (y_all_pred.argmax(axis=1) == labels_onehot.argmax(axis=1)).sum().asscalar()
print('epoch:{},loss:{},accuracy:{}'.format(epoch+50,loss(y_all_pred,labels_onehot).sum() / len(labels_onehot),acc_sum/len(y_all_pred)))
epoch:50,loss:
[2.1232333]
<NDArray 1 @cpu(0)>,accuracy:0.24652198107957707
epoch:100,loss:
[0.37193483]
<NDArray 1 @cpu(0)>,accuracy:0.9410127991096272
epoch:150,loss:
[0.25408813]
<NDArray 1 @cpu(0)>,accuracy:0.9543683917640512
epoch:200,loss:
[0.20680156]
<NDArray 1 @cpu(0)>,accuracy:0.9627156371730662
epoch:250,loss:
[0.1799252]
<NDArray 1 @cpu(0)>,accuracy:0.9666110183639399
epoch:300,loss:
[0.16203885]
<NDArray 1 @cpu(0)>,accuracy:0.9699499165275459
epoch:350,loss:
[0.14899409]
<NDArray 1 @cpu(0)>,accuracy:0.9738452977184195
epoch:400,loss:
[0.13890252]
<NDArray 1 @cpu(0)>,accuracy:0.9749582637729549
epoch:450,loss:
[0.13076076]
<NDArray 1 @cpu(0)>,accuracy:0.9755147468002225
epoch:500,loss:
[0.1239901]
<NDArray 1 @cpu(0)>,accuracy:0.9777406789092933

从零和使用mxnet实现softmax分类的更多相关文章

  1. 从零和使用mxnet实现dropout

    需求: 从零和使用mxnet实现dropout 数据集: 使用load_digits()手写数字数据集 要求: 使用1个掩藏层n_hidden1 = 36,激活函数为relu,损失函数为softmax ...

  2. 学习笔记TF010:softmax分类

    回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广.函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率.分量为概率,C个分量和始终为1.每个样本必须属于某个输出类别 ...

  3. 从零和使用mxnet实现线性回归

    1.线性回归从零实现 from mxnet import ndarray as nd import matplotlib.pyplot as plt import numpy as np import ...

  4. 动手学深度学习7-从零开始完成softmax分类

    获取和读取数据 初始化模型参数 实现softmax运算 定义模型 定义损失函数 计算分类准确率 训练模型 小结 import torch import torchvision import numpy ...

  5. softmax分类算法原理(用python实现)

    逻辑回归神经网络实现手写数字识别 如果更习惯看Jupyter的形式,请戳Gitthub_逻辑回归softmax神经网络实现手写数字识别.ipynb 1 - 导入模块 import numpy as n ...

  6. gluon实现softmax分类FashionMNIST

    from mxnet import gluon,init from mxnet.gluon import loss as gloss,nn from mxnet.gluon import data a ...

  7. Keras 多层感知机 多类别的 softmax 分类模型代码

    Multilayer Perceptron (MLP) for multi-class softmax classification: from keras.models import Sequent ...

  8. tf.nn.softmax 分类

    tf.nn.softmax(logits,axis=None,name=None,dim=None) 参数: logits:一个非空的Tensor.必须是下列类型之一:half, float32,fl ...

  9. softmax实现cifar10分类

    将cifar10改成单一通道后,套用前面的softmax分类,分类率40%左右,想哭... .caret, .dropup > .btn > .caret { border-top-col ...

随机推荐

  1. 将Prometheus alerts保存到elasticsearch

    Prometheus产生的告警通常会发送到alertmanager,当使用alertmanager时,其告警信息仅存在于alertmanager的内存中,无法持久化.故实现了小工具,用于将Promet ...

  2. Java中json使用与问题汇总

    一.JSON 解析类库 FastJson: 阿里巴巴开发的 JSON 库,性能十分优秀. 在maven项目的pom文件中以下依赖 <dependency> <groupId>c ...

  3. Docker入门之安装与简单使用操作

    1.docker安装 #1.检查内核版本,必须是3.10及以上 uname -r #2.安装 yum -y install docker 2.docker简单使用 #1.启动docker system ...

  4. mac上使用Sequel Pro工具SSH连接数据库

    今天在使用Mac上的Sequel Pro连接线上的数据库时,一直报ssh通道连接失败.但是同样的公钥在另一台机器就可以,真是奇怪. 通过查找日志发现有一个关键字"key_load_publi ...

  5. sql脚本来获取数据库中的所有表结构了

    sql脚本来获取数据库中的所有表结构了,代码如下: use AdventureWorks2008 go SELECT (case when a.colorder=1 then d.name else ...

  6. electron项目中使用js web worker时,new worker(path)路径问题

    如题,在new worker时需要传入js文件路径,可是在electron环境中使用出现问.同目录下,recorder.jsworker.js recorder.js中调用 var path = '. ...

  7. JS基石之-----常用方法封装的js库

    解析 URL Params 为对象 let url = 'http://www.domain.com/?user=anonymous&id=123&id=456&city=%E ...

  8. 【剑指 offer】数组中重复的数字 -- PHP 实现

    题目描述 在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复的数字. 例如,如果输入长度为 ...

  9. python—字符串拼接三种方法

    python—字符串拼接三种方法   1.使用加号(+)号进行拼接 字符串拼接直接进行相加就可以,比较容易理解,但是一定要记得,变量直接相加,不是变量就要用引号引起来,不然会出错,另外数字是要转换为字 ...

  10. github操作

    Github使用 1. 注册 ​ 官网:https://github.com/ 搜索项目 以压缩包的的形式下载demo 克隆项目 创建仓库 克隆项目,编写,完成上传,使用https请求,需要输入用户名 ...