Given an m * n matrix M initialized with all 0's and several update operations.

Operations are represented by a 2D array, and each operation is represented by an array with two positive integers a and b, which means M[i][j] should be added by one for all 0 <= i < a and 0 <= j < b.

You need to count and return the number of maximum integers in the matrix after performing all the operations.

Example 1:

Input:
m = 3, n = 3
operations = [[2,2],[3,3]]
Output: 4
Explanation:
Initially, M =
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]] After performing [2,2], M =
[[1, 1, 0],
[1, 1, 0],
[0, 0, 0]] After performing [3,3], M =
[[2, 2, 1],
[2, 2, 1],
[1, 1, 1]] So the maximum integer in M is 2, and there are four of it in M. So return 4.

Note:

  1. The range of m and n is [1,40000].
  2. The range of a is [1,m], and the range of b is [1,n].
  3. The range of operations size won't exceed 10,000.

这道题看起来像是之前那道 Range Addition 的拓展,但是感觉实际上更简单一些。每次在 ops 中给定我们一个横纵坐标,将这个子矩形范围内的数字全部自增1,让我们求最大数字的个数。原数组初始化均为0,那么如果 ops 为空,没有任何操作,那么直接返回 m*n 即可,我们可以用一个优先队列来保存最大数字矩阵的横纵坐标,我们可以通过举些例子发现,只有最小数字组成的边界中的数字才会被每次更新,所以我们想让最小的数字到队首,更优先队列的排序机制是大的数字在队首,所以我们对其取相反数,这样我们最后取出两个队列的队首数字相乘即为结果,参见代码如下:

解法一:

class Solution {
public:
int maxCount(int m, int n, vector<vector<int>>& ops) {
if (ops.empty() || ops[].empty()) return m * n;
priority_queue<int> r, c;
for (auto op : ops) {
r.push(-op[]);
c.push(-op[]);
}
return r.top() * c.top();
}
};

我们可以对空间进行优化,不使用优先队列,而是每次用 ops 中的值来更新m和n,取其中较小值,这样遍历完成后,m和n就是最大数矩阵的边界了,参见代码如下:

解法二:

class Solution {
public:
int maxCount(int m, int n, vector<vector<int>>& ops) {
for (auto op : ops) {
m = min(m, op[]);
n = min(n, op[]);
}
return m * n;
}
};

类似题目:

Range Addition

参考资料:

https://leetcode.com/problems/range-addition-ii/

https://leetcode.com/problems/range-addition-ii/discuss/103595/Java-Solution-find-Min

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 598. Range Addition II 范围相加之二的更多相关文章

  1. [LeetCode] Range Addition II 范围相加之二

    Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...

  2. LeetCode: 598 Range Addition II(easy)

    题目: Given an m * n matrix M initialized with all 0's and several update operations. Operations are r ...

  3. LeetCode 598. Range Addition II (范围加法之二)

    Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...

  4. 【leetcode_easy】598. Range Addition II

    problem 598. Range Addition II 题意: 第一感觉就是最小的行和列的乘积即是最后结果. class Solution { public: int maxCount(int ...

  5. 598. Range Addition II 矩阵的范围叠加

    [抄题]: Given an m * n matrix M initialized with all 0's and several update operations. Operations are ...

  6. 【LeetCode】598. Range Addition II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  7. [LeetCode&Python] Problem 598. Range Addition II

    Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...

  8. 【leetcode】598. Range Addition II

    You are given an m x n matrix M initialized with all 0's and an array of operations ops, where ops[i ...

  9. 598. Range Addition II

    Given an m * n matrixMinitialized with all0's and several update operations. Operations are represen ...

随机推荐

  1. tensorflow之tf.shape()

    tf.shape()这个方法就相当于numpy当中shape属性. 下面通过列子来了解: 具体而言,tf.shape是用来获取张量的维度(shape).

  2. Python机器学习笔记 Grid SearchCV(网格搜索)

    在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...

  3. 云原生时代, Kubernetes 多集群架构初探

    为什么我们需要多集群? 近年来,多集群架构已经成为“老生常谈”.我们喜欢高可用,喜欢异地多可用区,而多集群架构天生就具备了这样的能力.另一方面我们也希望通过多集群混合云来降低成本,利用到不同集群各自的 ...

  4. Vue基础框架

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <!-- 设置语言为 ...

  5. HTML教程详解

    HTML学习笔记 目录 一.html简介 1.html是什么? 2.html能做什么(html的作用)? 3.html书写规范 二.html基本标签 1.标签的语法 2.标签的分类 3.常用标签: 1 ...

  6. Eclipse 常用快捷键-java

    (转自https://www.runoob.com/w3cnote/eclipse-shortcut-keys.html) Eclipse有强大的编辑功能, 工欲善其事,必先利其器, 掌握Eclips ...

  7. winform子窗口调用父窗口的控件及方法-一般调用

    首先新建一个窗体应用程序,在项目属性中点击右键->添加->添加新项,选择Windows窗体->添加. 在Form1和Form2窗口中各添加一个按钮,并双击添加事件处理函数:     ...

  8. 4-consul HTTP API及实践

    其他参考:https://www.cnblogs.com/duanxz/p/9660766.html 原文:https://www.douban.com/note/629645759/ 注意:使用AP ...

  9. Linux用户和权限——管理用户和用户组的命令

    Linux用户和权限——管理用户和用户组的命令 摘要:本文主要学习了在Linux系统中管理用户和用户组的命令. useradd命令 useradd命令可以用来创建新用户. 基本语法 useradd [ ...

  10. js 设计模式——策略模式

    策略模式(Strategy) 定义:将定义的一组算法封装起来,使其相互之间可以替换.封装的算法具有一定的独立性,不会随客户端的变化而变化 废话不多说,先来个例子 // 例如要写一个计算两个数加减乘除的 ...