LSTM和双向LSTM讲解及实践

目录

RNN的长期依赖问题
LSTM原理讲解
双向LSTM原理讲解
Keras实现LSTM和双向LSTM

一、RNN的长期依赖问题

在上篇文章中介绍的循环神经网络RNN在训练的过程中会有长期依赖的问题,这是由于RNN模型在训练时会遇到梯度消失(大部分情况)或者梯度爆炸(很少,但对优化过程影响很大)的问题。对于梯度爆炸是很好解决的,可以使用梯度修剪(Gradient Clipping),即当梯度向量大于某个阈值,缩放梯度向量。但对于梯度消失是很难解决的。所谓的梯度消失或梯度爆炸是指训练时计算和反向传播,梯度倾向于在每一时刻递减或递增,经过一段时间后,梯度就会收敛到零(消失)或发散到无穷大(爆炸)。简单来说,长期依赖的问题就是在每一个时间的间隔不断增大时,RNN会丧失到连接到远处信息的能力。

如下图,随着时间点t的不断递增,当t时刻和0时刻的时间间隔较大的时候,t时刻的记忆ht可能已经丧失了学习连接到远处0时刻的信息的能力了。

假设X0的输入为”我住在深圳”,后面插入了很多其他的句子,然后在Xt输入了“我在市政府上班”。由于X0与Xt相差很远,当RNN输入到Xt时,t时刻的记忆ht已经丧失了X0时保存的信息了。因此在Xt时刻神经网络无法理解到我是在哪一个城市的市政府上班了。

二、LSTM原理讲解

在理论上,RNN绝对可以处理这样的长期依赖问题。人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN却不能够成功学习到这些知识。因此,LSTM就是为了解决长期依赖问题而生的,LSTM通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM的默认行为,而非需要付出很大代价才能获得的能力!

所有RNN都具有一种重复神经网络模块的链式的形式。在标准的RNN 中,这个重复的模块只有一个非常简单的结构,例如一个tanh层。\

LSTM同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

先介绍上图中的符号意义:

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise 的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

接下来将对LSTM进行逐步理解。在每个记忆单元(图中A)中包括细胞状态(Ct),遗忘门,输入门和输出门。这些门结构能让信息选择性通过,用来去除或者增加信息到细胞状态。

1.细胞状态(Ct)

t时刻的记忆信息,用来保存重要信息。就好像我们的笔记本一样,保存了我们以前学过的知识点。如下图的水平线从图上方贯穿运行,直接在整个链上运行,使得信息在上面流传保持不变会很容易。

2.遗忘门

控制遗忘上一层细胞状态的内容,根据上一序列的ht-1和本序列的Xt为输入,通过sigmoid激活函数,得到上一层细胞状态内容哪些需要去除,那些需要保留。值得注意的是,该输入是以向量的形式,我们希望遗忘门输出的值大多为0或1,即对向量中的每个值是完全忘记或者完全记住,因此我们使用的是sigmoid函数作为激活函数,因为该函数在许多取值范围内的值都接近于0或1(这里不能用阶跃函数作为激活函数,因为它在所有位置的梯度都为0,无法作为激活函数)。其他门使用sigmoid函数同理。因此,虽然在其他神经网络可以变换激活函数,但并不建议变换LSTM的激活函数。

以一个例子来说明遗忘门的作用:在语言模型中,细胞状态可能保存着这样的重要信息:当前主语为单数或者复数等。如当前的主语为“小明”,当输入为“同学们”,此时遗传门就要开始“干活”了,将“小明”遗忘,主语为单数形式遗忘。

3.输入门

处理当前序列位置的输入,确定需要更新的信息,去更新细胞状态。此过程分为两部分,一部分是使用包含sigmoid层的输入门决定哪些新信息该被加入到细胞状态;确定了哪些新信息要加入后,需要将新信息转换成能够加入到细胞状态的形式。所以另一部分是使用tanh函数产生一个新的候选向量。(可以这么理解,LSTM的做法是对信息都转为能加入细胞状态的形式,然后再通过第一部分得到的结果确定其中哪些新信息加入到细胞状态。)

有了遗忘门和输入门,现在我们就能把细胞状态Ct−1更新为Ct了。如下图所示,其中ft×Ct−1表示希望删除的信息,it×Ct表示新增的信息。

4.输出门

最后要基于细胞状态保存的内容来确定输出什么内容。即选择性的输出细胞状态保存的内容。类似于输入门两部分实现更新一样,输出门也是需要使用sigmoid激活函数确定哪个部分的内容需要输出,然后再使用tanh激活函数对细胞状态的内容进行处理(因为通过上面计算得到的Ct每个值不是在tanh的取值范围-1~1中,需要调整),将这两部分相乘就得到了我们希望输出的那部分。

举个例子,同样在语言模型中,细胞状态中此时包含很多重要信息,比如:主语为单数形式,时态为过去时态,主语的性别为男性等,此时输入为一个主语,可能需要输出与动词相关的信息,这个时候只需要输出是单数形式和时态为过程,而不需要输出主语性别就可确定动词词性的变化。

三、双向LSTM(Bi-directional LSTM)

如上篇文章BRNN所述同理,有些时候预测可能需要由前面若干输入和后面若干输入共同决定,这样会更加准确。因此提出了双向循环神经网络,网络结构如下图。可以看到Forward层和Backward层共同连接着输出层,其中包含了6个共享权值w1-w6。

在Forward层从1时刻到t时刻正向计算一遍,得到并保存每个时刻向前隐含层的输出。在Backward层沿着时刻t到时刻1反向计算一遍,得到并保存每个时刻向后隐含层的输出。最后在每个时刻结合Forward层和Backward层的相应时刻输出的结果得到最终的输出,用数学表达式如下:

有些问题,其实稍微看看就可以明白。

四、Keras实现LSTM和双向LSTM

Keras对循环神经网络的支持和封装在上一篇文章已经讲解了,在这里仅介绍两个模型的搭建,如有疑问请阅读keras系列的上一篇文章。

原文链接:https://blog.csdn.net/fendouaini/article/details/8019899

 

单向LSTM与双向LSTM对比,一个简单的DEMO:实现手写数字图片的识别

https://blog.csdn.net/kudou1994/article/details/80851227

LSTM和双向LSTM讲解及实践的更多相关文章

  1. 使用Keras进行深度学习:(六)LSTM和双向LSTM讲解及实践

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 长短期记忆(Long Short Term Memory, ...

  2. 使用Keras进行深度学习:(五)RNN和双向RNN讲解及实践

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 笔者:Ray 介绍 通过对前面文章的学习,对深度神经网络(DNN) ...

  3. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  4. 【中文分词系列】 4. 基于双向LSTM的seq2seq字标注

    http://spaces.ac.cn/archives/3924/ 关于字标注法 上一篇文章谈到了分词的字标注法.要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了.在我看来,字 ...

  5. NLP(十九) 双向LSTM情感分类模型

    使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pa ...

  6. 使用Keras进行深度学习:(七)GRU讲解及实践

    ####欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 GRU(Gated Recurrent Unit) ...

  7. 基于双向LSTM和迁移学习的seq2seq核心实体识别

    http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”, ...

  8. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

  9. keras实例学习-双向LSTM进行imdb情感分类

    源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1. ...

随机推荐

  1. zabbix监控内存

    取内存百分比 取出内存的可用的MB大小 / 总的内存大小 = 实际可用的百分比 avilable 710 X 100 / total 974 free -m|awk '/^Mem/{print $NF ...

  2. css详解3

    推荐学习链接:css盒模型 1.盒模型的常用属性 1.1.pading <html lang="en"> <head> <meta charset=& ...

  3. node-mysql-promise 操作

    使用node操作数据库做顺序操作很麻烦,为了保证执行顺序需要使用promise. 可以直接封装,也可以使用封装好的,比如node-mysql-promise 操作文档见https://www.npmj ...

  4. No converter found capable of converting from type [java.lang.String] to type [java.util.Map<java.lang.String, java.lang.String>]

    java.lang.IllegalStateException: Failed to load ApplicationContext at org.springframework.test.conte ...

  5. 正确robots写法,解决百度搜索不显示缩略图问题

    网站上线http://zhimo.yuanzhumuban.cc/有一年左右时间了,百度搜索显示略缩图少之又少,通过自己这几天的观察发现. 结合百度站长平台的 robots 工具和抓取诊断工具检查后, ...

  6. TJOI2016 字符串

    字符串 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须正确回答这m个问题,才能打开箱子拿到礼物,升职 ...

  7. 十五.ProtoBuf3的基础总结

    转自: https://blog.csdn.net/u011518120/article/details/54604615 定义一个消息类型 指定字段类型 分配标识号 指定字段规则 添加更多消息类型 ...

  8. Go语言 - 数组 | 多维数组

    Array 数组是同一种数据类型元素的集合. 在Go语言中,数组从声明时就确定,使用时可以修改数组成员,但是数组大小不可变化. 1.数组 在定义阶段,长度和类型就固定了,以后不能更改 2.长度也是数组 ...

  9. STAF Trust Level 4 required for FS copy request

    C#中使用STAF从本机传输文件到远程的电脑,出现如下错误: 解决方法: 修改service.ini文件,添加信任IP段,并将trust level 设置为5,修改后文件内容如下 trace enab ...

  10. 简述 OSI 七层协议?

    OSI七层协议是一个用于计算机或通信系统间互联的标准体系. 物理层功能:主要是基于电器特性发送高低电压(电信号),高电压对应数字1,低电压对应数字0. 数据链路层的功能:定义了电信号的分组方式按照以太 ...