推到了一个推不下去的形式,然后就不会了 ~

看题解后傻了:我推的是对的,推不下去是因为不需要再推了.

复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~

code:

#include <bits/stdc++.h>
#define ll long long
#define N 500006
#define mod 1000000007
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int cnt;
int mu[N],vis[N],prime[N];
int qpow(int x,int y)
{
int tmp=1;
while(y)
{
if(y&1) tmp=(ll)tmp*x%mod;
x=(ll)x*x%mod;
y>>=1;
}
return tmp;
}
void Initialize()
{
int i,j;
mu[1]=1;
for(i=2;i<N;++i)
{
if(!vis[i]) prime[++cnt]=i,mu[i]=-1;
for(j=1;j<=cnt&&prime[j]*i<N;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j])
{
mu[i*prime[j]]=-mu[i];
}
else
{
mu[i*prime[j]]=0;
break;
}
}
}
}
int n,m;
int a[N],sum[N];
int ans=0;
int main()
{
int i,j;
// setIO("input");
Initialize();
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=m;++i) a[i]=1;
for(int d=1;d<=n;++d)
{
for(i=1;i<=m/d;++i)
{
a[i]=(ll)a[i]*i%mod;
sum[i]=(ll)(sum[i-1]+a[i])%mod;
}
int tmp=0;
for(int c=1;c<=n/d;++c)
{
tmp=(ll)(tmp+(ll)mu[c]*qpow(c,2*d)%mod*sum[n/d/c]%mod*sum[m/d/c]%mod+mod)%mod;
}
ans=(ll)(ans+(ll)qpow(d,d)*tmp%mod)%mod;
}
printf("%d\n",ans);
return 0;
}

  

BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析的更多相关文章

  1. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  2. ●BZOJ 3561 DZY Loves Math VI

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{ ...

  3. 【bzoj3561】DZY Loves Math VI 莫比乌斯反演

    题目描述 给定正整数n,m.求   输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...

  4. BZOJ3561 DZY Loves Math VI 莫比乌斯反演

    传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...

  5. 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)

    3561: DZY Loves Math VI Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 205  Solved: 141 Description ...

  6. 【BZOJ3309】DZY Loves Math(莫比乌斯反演)

    [BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...

  7. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  8. DZY LOVES MATH (莫比乌斯反演)

    OK!开始更新莫比乌斯反演 先看了一下数据范围,嗯,根据\(jiry\)老师的真言,我们一定是可以筛一遍然后用根号或者是\(log\)的算法. 题目思路挺简单,就是把原始的式子化成: \(\sum_{ ...

  9. 【BZOJ】3561: DZY Loves Math VI

    题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...

随机推荐

  1. FileUpload上传多张照片

    <asp:FileUpload ID="uploaderInput" runat="server" multiple="multiple&quo ...

  2. asp获取access数据库中的一条随机记录

    针对“用一条SQL得到数据库中的随机记录集”问题在网上已经有很多答案了: SQL Server 2000: SELECT TOP n * FROM tanblename ORDER BY NEWID( ...

  3. quota磁盘配额

    一.什么是磁盘配额 磁盘配额从字面意思上看就是给一个磁盘配置多少额度,而quota就是有多少限额的意思,所以总的来说就是限制用户对磁盘空间的使用量.因为Linux是多用户多任务的操作系统,许多人公用磁 ...

  4. MySQL之SQL演练(四)

    一:准备数据 1.创建数据表 -- 创建 "京东" 数据库 create database jing_dong charset=utf8; -- 使用 "京东" ...

  5. python基础01day

    1 python多版本共存 因为python2和python3的解释器程序都是python.exe,在同时加入环境变量的情况下名称重复,如果重命名的话又会造成需要链接解释器的程序无法调用解释器,所以采 ...

  6. JavaScript 调试 debug

    一.错误 1.语法错误 出现错误,有提示,很容易的解决. 2.逻辑错误 不容易发现 二.调试方式 1.alert() 方式 2.console.log()/console.error() 方式 3.断 ...

  7. 滥用exchage远程调用域管理员API接口

    0x00 前言 在大多数的Active Directory和Exchange中,Exchange服务器具有很高的权限,即Exchange服务器上的管理员可以很容易地将权限提升到域管理员权限,我在zdi ...

  8. Flink Time深度解析(转)

    Flink 的 API 大体上可以划分为三个层次:处于最底层的 ProcessFunction.中间一层的 DataStream API 和最上层的 SQL/Table API,这三层中的每一层都非常 ...

  9. 微博api接口登陆,获取信息,分享微博

    import json from datetime import datetime import MySQLdb import requests from flask import Flask, re ...

  10. jieba分词及词频统计小项目

    import pandas as pd import jieba import jieba.analyse from collections import Counter,OrderedDict ji ...