BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析
推到了一个推不下去的形式,然后就不会了 ~
看题解后傻了:我推的是对的,推不下去是因为不需要再推了.
复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~
code:
#include <bits/stdc++.h>
#define ll long long
#define N 500006
#define mod 1000000007
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int cnt;
int mu[N],vis[N],prime[N];
int qpow(int x,int y)
{
int tmp=1;
while(y)
{
if(y&1) tmp=(ll)tmp*x%mod;
x=(ll)x*x%mod;
y>>=1;
}
return tmp;
}
void Initialize()
{
int i,j;
mu[1]=1;
for(i=2;i<N;++i)
{
if(!vis[i]) prime[++cnt]=i,mu[i]=-1;
for(j=1;j<=cnt&&prime[j]*i<N;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j])
{
mu[i*prime[j]]=-mu[i];
}
else
{
mu[i*prime[j]]=0;
break;
}
}
}
}
int n,m;
int a[N],sum[N];
int ans=0;
int main()
{
int i,j;
// setIO("input");
Initialize();
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=m;++i) a[i]=1;
for(int d=1;d<=n;++d)
{
for(i=1;i<=m/d;++i)
{
a[i]=(ll)a[i]*i%mod;
sum[i]=(ll)(sum[i-1]+a[i])%mod;
}
int tmp=0;
for(int c=1;c<=n/d;++c)
{
tmp=(ll)(tmp+(ll)mu[c]*qpow(c,2*d)%mod*sum[n/d/c]%mod*sum[m/d/c]%mod+mod)%mod;
}
ans=(ll)(ans+(ll)qpow(d,d)*tmp%mod)%mod;
}
printf("%d\n",ans);
return 0;
}
BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析的更多相关文章
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- ●BZOJ 3561 DZY Loves Math VI
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{ ...
- 【bzoj3561】DZY Loves Math VI 莫比乌斯反演
题目描述 给定正整数n,m.求 输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...
- BZOJ3561 DZY Loves Math VI 莫比乌斯反演
传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...
- 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)
3561: DZY Loves Math VI Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 205 Solved: 141 Description ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...
- DZY LOVES MATH (莫比乌斯反演)
OK!开始更新莫比乌斯反演 先看了一下数据范围,嗯,根据\(jiry\)老师的真言,我们一定是可以筛一遍然后用根号或者是\(log\)的算法. 题目思路挺简单,就是把原始的式子化成: \(\sum_{ ...
- 【BZOJ】3561: DZY Loves Math VI
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...
随机推荐
- FileUpload上传多张照片
<asp:FileUpload ID="uploaderInput" runat="server" multiple="multiple&quo ...
- asp获取access数据库中的一条随机记录
针对“用一条SQL得到数据库中的随机记录集”问题在网上已经有很多答案了: SQL Server 2000: SELECT TOP n * FROM tanblename ORDER BY NEWID( ...
- quota磁盘配额
一.什么是磁盘配额 磁盘配额从字面意思上看就是给一个磁盘配置多少额度,而quota就是有多少限额的意思,所以总的来说就是限制用户对磁盘空间的使用量.因为Linux是多用户多任务的操作系统,许多人公用磁 ...
- MySQL之SQL演练(四)
一:准备数据 1.创建数据表 -- 创建 "京东" 数据库 create database jing_dong charset=utf8; -- 使用 "京东" ...
- python基础01day
1 python多版本共存 因为python2和python3的解释器程序都是python.exe,在同时加入环境变量的情况下名称重复,如果重命名的话又会造成需要链接解释器的程序无法调用解释器,所以采 ...
- JavaScript 调试 debug
一.错误 1.语法错误 出现错误,有提示,很容易的解决. 2.逻辑错误 不容易发现 二.调试方式 1.alert() 方式 2.console.log()/console.error() 方式 3.断 ...
- 滥用exchage远程调用域管理员API接口
0x00 前言 在大多数的Active Directory和Exchange中,Exchange服务器具有很高的权限,即Exchange服务器上的管理员可以很容易地将权限提升到域管理员权限,我在zdi ...
- Flink Time深度解析(转)
Flink 的 API 大体上可以划分为三个层次:处于最底层的 ProcessFunction.中间一层的 DataStream API 和最上层的 SQL/Table API,这三层中的每一层都非常 ...
- 微博api接口登陆,获取信息,分享微博
import json from datetime import datetime import MySQLdb import requests from flask import Flask, re ...
- jieba分词及词频统计小项目
import pandas as pd import jieba import jieba.analyse from collections import Counter,OrderedDict ji ...