CF1175E Minimal Segment Cover
题意
给出n条线段。m次询问,每次询问给出一个区间\([l,r]\)问最少需要多少条线段才能覆盖区间\([l,r]\)。
所有坐标\(\le 5\times 10^5\)。\(n,m\le 2\times 10^ 5\)
思路
其实是比较经典的线段覆盖问题。
\(f[i][j]\)表示从i开始走\(2^j\)条线段最远到达的位置。
然后对于每次询问都走一遍即可。
代码
/*
* @Author: wxyww
* @Date: 2019-06-06 10:55:48
* @Last Modified time: 2019-06-06 14:54:02
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 1000000 + 100,logN = 23;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int f[N][logN + 1];
int query(int l,int r) {
ll ans = 0;
for(int i = logN - 1;i >= 0;--i) {
if(f[l][i] < r) {
l = f[l][i];
ans += (1 << i);
}
}
l = f[l][0];ans++;
if(l < r) return -1;
return ans;
}
int main() {
int n = read(),m = read();
int mx = 0;
for(int i = 1;i <= n;++i) {
int l = read() + 1,r = read() + 1;
f[l][0] = max(f[l][0],r);
mx = max(mx,r);
}
for(int i = 1;i <= mx;++i) f[i][0] = max(f[i][0],max(i,f[i - 1][0]));
for(int j = 1;j < logN;++j)
for(int i = 1;i <= mx;++i)
f[i][j] = f[f[i][j - 1]][j - 1];
while(m--) {
int l = read() + 1,r = read() + 1;
printf("%d\n",query(l,r));
}
return 0;
}
CF1175E Minimal Segment Cover的更多相关文章
- CF1175E Minimal Segment Cover 题解
题意:给出\(n\)个形如\([l,r]\)的线段.\(m\)次询问,每次询问区间\([x,y]\),问至少选出几条线段,使得区间\([x,y]\)的任何一个部位都被至少一条线段覆盖. 首先有一个显然 ...
- Codeforces 1175E Minimal Segment Cover
题意: 有\(n\)条线段,区间为\([l_i, r_i]\),每次询问\([x_i, y_i]\),问要被覆盖最少要用多少条线段. 思路: \(f[i][j]\)表示以\(i\)为左端点,用了\(2 ...
- CodeForces - 1175E Minimal Segment Cover (倍增优化dp)
题意:给你n条线段[l,r]以及m组询问,每组询问给出一组[l,r],问至少需要取多少个线段可以覆盖[l,r]区间中所有的点. 如果贪心地做的话,可以求出“从每个左端点l出发选一条线段可以到达的最右端 ...
- codeforces1175E Minimal Segment Cover 倍增
题目传送门 题意:给出n条平行于x轴的线段,q次询问,每次询问一个区间最少要几条线段来覆盖,若不能覆盖则输出-1. 思路:先考虑贪心,必定是先找到,所有左端点小于等于$x$的线段的右端点最大在哪里,然 ...
- Codeforces Edu Round 66 A-E
A. From Hero to Zero 通过取余快速运行第一步即可.由于\(a \% b (a >= b) <= \frac{a}{2}\).所以总复杂度不超过\(O(log_2n)\) ...
- uva.10020 Minimal coverage(贪心)
10020 Given several segments of line (int the X axis) with coordinates [Li, Ri]. You are to choose t ...
- 【区间覆盖问题】uva 10020 - Minimal coverage
可以说是区间覆盖问题的例题... Note: 区间包含+排序扫描: 要求覆盖区间[s, t]; 1.把各区间按照Left从小到大排序,如果区间1的起点大于s,则无解(因为其他区间的左起点更大):否则选 ...
- UVa 10020 - Minimal coverage(区间覆盖并贪心)
Given several segments of line (int the X axis) with coordinates [Li, Ri]. You are to choose the min ...
- UVA 10020 Minimal coverage(贪心 + 区间覆盖问题)
Minimal coverage The Problem Given several segments of line (int the X axis) with coordinates [Li, ...
随机推荐
- 【Linux命令】ulimit设置最大文件打开数
一.简介 在Linux下有时会遇到Socket/File : Can't open so many files的问题.其实Linux是有文件句柄限制的,而且Linux默认一般都是1024(阿里云主机默 ...
- Vue.js 源码分析(十五) 指令篇 v-bind指令详解
指令是Vue.js模板中最常用的一项功能,它带有前缀v-,比如上面说的v-if.v-html.v-pre等.指令的主要职责就是当其表达式的值改变时,相应的将某些行为应用到DOM上,先介绍v-bind指 ...
- CentOS下安装FreeTDS
导读 官方网站:http://www.freetds.org 下载地址:http://ibiblio.org/pub/Linux/ALPHA/freetds/stable/freetds-stable ...
- 【MySQL】完整性约束条件与设计范式
完整性约束条件 概念: 对表中的数据进行限定,保证数据的正确性.有效性和完整性. 分类: 主键约束:primary key 非空约束:not null 唯一约束:unique 外键约束:foreign ...
- ASP.Net Core使用Ajax局部更新
由于目前ASP.NET Core中没有提供Ajax帮助器,所以参照 上一篇帖文,使用data-ajax-*属性来使用jQuery Unobtrusive Ajax功能实现HTML的局部页面元素更新. ...
- U9创建BE组件
打开UBF,新建项目->实体项目 输入名称后,点击确定,第二步:修改名称以在后期作为文件夹区分 第三步:创建实体 第四步:添加U9基础对象引用 拖动到解决方案的Reference 第五步:右键构 ...
- Winform 窗体皮肤美化_IrisSkin
1 先把IrisSkin2.dll文件添加到当前项目引用(解决方案资源管理器->当前项目->引用->右键->添加引用,找到IrisSkin2.dll文件.....之后就不用我说 ...
- netCore3.0+webapi到前端vue(前端)
前篇已经完成后端配置并获取到api连接 https://www.cnblogs.com/ouyangkai/p/11504279.html 前端项目用的是VS code编译器完成 vue 第一步 引入 ...
- sqlserver the name is not a valid identifier error in function
参考资料:https://stackoverflow.com/questions/22008859/the-name-is-not-a-valid-identifier-error-in-functi ...
- js函数定义及一些说明
1.javascript定义函数的三种方法一.function语句//这个方法比较常用function fn(){ alert("这是使用function语句进行函数定义");}f ...