TCP协议(下)
TCP滑动窗口
发送端
- LastByteAcked:第一部分和第二部分的分界线
- LastByteSent:第二部分和第三部分的分界线
- LastByteAcked + AdvertisedWindow:第三部分和第四部分的分界线
第一部分:发送了并且已经确认的。
第二部分:发送了并且尚未确认的。
第三部分:没有发送,但是已经等待发送的。
第四部分:没有发送,并且暂时还不会发送的。
接收端
- MaxRcvBuffer:最大缓存的量;
- LastByteRead 之后是已经接收了,但是还没被应用层读取的;
- NextByteExpected 是第一部分和第二部分的分界线。
第一部分:接受并且确认过的。
第二部分:还没接收,但是马上就能接收的。
第三部分:还没接收,也没法接收的。
顺序问题与丢包问题
还是刚才的图,在发送端来看,1、2、3 已经发送并确认;4、5、6、7、8、9 都是发送了还没确认;
10、11、12 是还没发出的;13、14、15 是接收方没有空间,不准备发的。
在接收端来看,1、2、3、4、5 是已经完成 ACK,但是没读取的;6、7 是等待接收的;8、9 是已经接
收,但是没有 ACK 的
发送端和接收端当前的状态如下:
- 1、2、3 没有问题,双方达成了一致。
- 4、5 接收方说 ACK 了,但是发送方还没收到,有可能丢了,有可能在路上。
- 6、7、8、9 肯定都发了,但是 8、9 已经到了,但是 6、7 没到,出现了乱序,缓存着但是没办法ACK。
确认与重发的机制
假设 4 的确认到了,不幸的是,5 的 ACK 丢了,6、7 的数据包丢了,这该怎么办呢?
一种方法就是超时重试,也即对每一个发送了,但是没有 ACK 的包,都有设一个定时器,超过了一定的时间,就重新尝试。但是这个超时的时间如何评估呢?这个时间不宜过短,时间必须大于往返时间RTT,否则会引起不必要的重传。也不宜过长,这样超时时间变长,访问就变慢了。估计往返时间,需要 TCP 通过采样 RTT 的时间,然后进行加权平均,算出一个值,而且这个值还是要不断变化的,因为网络状况不断的变化。除了采样 RTT,还要采样 RTT 的波动范围,计算出一个估计的超时时间。由于重传时间是不断变化的,我们称为自适应重传算法(Adaptive RetransmissionAlgorithm)。
如果过一段时间,5、6、7 都超时了,就会重新发送。接收方发现 5 原来接收过,于是丢弃 5;6 收到了,发送 ACK,要求下一个是 7,7 不幸又丢了。当 7 再次超时的时候,有需要重传的时候,TCP 的策略是超时间隔加倍。每当遇到一次超时重传的时候,都会将下一次超时时间间隔设为先前值的两倍。两次超时,就说明网络环境差,不宜频繁反复发送。
超时触发重传存在的问题是,超时周期可能相对较长。那是不是可以有更快的方式呢?
有一个可以快速重传的机制,当接收方收到一个序号大于下一个所期望的报文段时,就检测到了数据流中的一个间格,于是发送三个冗余的 ACK,客户端收到后,就在定时器过期之前,重传丢失的报文段。例如,接收方发现 6、8、9 都已经接收了,就是 7 没来,那肯定是丢了,于是发送三个 6 的 ACK,要求下一个是 7。客户端收到 3 个,就会发现 7 的确又丢了,不等超时,马上重发。
还有一种方式称为Selective Acknowledgment (SACK)。这种方式需要在 TCP 头里加一个 SACK 的东西,可以将缓存的地图发送给发送方。例如可以发送 ACK6、SACK8、SACK9,有了地图,发送方一下子就能看出来是 7 丢了。
流量控制问题
再来看流量控制机制,在对于包的确认中,同时会携带一个窗口的大小。
先假设窗口不变的情况,窗口始终为 9。4 的确认来的时候,会右移一个,这个时候第 13 个包也可以发送了。
这个时候,假设发送端发送过猛,会将第三部分的 10、11、12、13 全部发送完毕,之后就停止发送
了,未发送可发送部分为 0。
当对于包 5 的确认到达的时候,在客户端相当于窗口再滑动了一格,这个时候,才可以有更多的包可以发送了,例如第 14 个包才可以发送。
如果接收方实在处理的太慢,导致缓存中没有空间了,可以通过确认信息修改窗口的大小,甚至可以设置为 0,则发送方将暂时停止发送。
假设一个极端情况,接收端的应用一直不读取缓存中的数据,当数据包 6 确认后,窗口大小就不能再是 9 了,就要缩小一个变为 8。
这个新的窗口 8 通过 6 的确认消息到达发送端的时候,你会发现窗口没有平行右移,而是仅仅左面的边右移了,窗口的大小从 9 改成了 8。
如果接收端还是一直不处理数据,则随着确认的包越来越多,窗口越来越小,直到为 0。
当这个窗口通过包 14 的确认到达发送端的时候,发送端的窗口也调整为 0,停止发送
如果这样的话,发送方会定时发送窗口探测数据包,看是否有机会调整窗口的大小。当接收方比较慢的时候,要防止低能窗口综合征,别空出一个字节来就赶快告诉发送方,然后马上又填满了,可以当窗口太小的时候,不更新窗口,直到达到一定大小,或者缓冲区一半为空,才更新窗口。这就是我们常说的流量控制。
拥塞控制
拥塞控制的问题,也是通过窗口的大小来控制的,前面的滑动窗口 rwnd 是怕发送方
把接收方缓存塞满,而拥塞窗口 cwnd,是怕把网络塞满。这里有一个公式 LastByteSent - LastByteAcked <= min {cwnd, rwnd} ,是拥塞窗口和滑动窗口共同控制发送的速度。
水管有粗细,网络有带宽,也即每秒钟能够发送多少数据;水管有长度,端到端有时延。在理想状态下,水管里面水的量 = 水管粗细 x 水管长度。对于到网络上,通道的容量 = 带宽 × 往返延迟。
如果我们设置发送窗口,使得发送但未确认的包为为通道的容量,就能够撑满整个管道。
如图所示,假设往返时间为 8s,去 4s,回 4s,每秒发送一个包,每个包 1024byte。已经过去了 8s,则 8 个包都发出去了,其中前 4 个包已经到达接收端,但是 ACK 还没有返回,不能算发送成功。5-8后四个包还在路上,还没被接收。这个时候,整个管道正好撑满,在发送端,已发送未确认的为 8 个包,正好等于带宽,也即每秒发送 1 个包,乘以来回时间 8s。
如果我们在这个基础上再调大窗口,使得单位时间内更多的包可以发送,会出现什么现象呢?
我们来想,原来发送一个包,从一端到达另一端,假设一共经过四个设备,每个设备处理一个包时间耗费 1s,所以到达另一端需要耗费 4s,如果发送的更加快速,则单位时间内,会有更多的包到达这些中间设备,这些设备还是只能每秒处理一个包的话,多出来的包就会被丢弃,这是我们不想看到的。这个时候,我们可以想其他的办法,例如这个四个设备本来每秒处理一个包,但是我们在这些设备上加缓存,处理不过来的在队列里面排着,这样包就不会丢失,但是缺点是会增加时延,这个缓存的包,4s肯定到达不了接收端了,如果时延达到一定程度,就会超时重传,也是我们不想看到的。
于是 TCP 的拥塞控制主要来避免两种现象,包丢失和超时重传。一旦出现了这些现象就说明,发送速度太快了,要慢一点。但是一开始我怎么知道速度多快呢,我怎么知道应该把窗口调整到多大呢?
如果我们通过漏斗往瓶子里灌水,我们就知道,不能一桶水一下子倒进去,肯定会溅出来,要一开始慢慢的倒,然后发现总能够倒进去,就可以越倒越快。这叫作慢启动。
一条 TCP 连接开始,cwnd 设置为一个报文段,一次只能发送一个;当收到这一个确认的时候,cwnd加一,于是一次能够发送两个;当这两个的确认到来的时候,每个确认 cwnd 加一,两个确认 cwnd 加二,于是一次能够发送四个;当这四个的确认到来的时候,每个确认 cwnd 加一,四个确认 cwnd 加四,于是一次能够发送八个。可以看出这是指数性的增长。
涨到什么时候是个头呢?有一个值 ssthresh 为 65535 个字节,当超过这个值的时候,就要小心一点了,不能倒这么快了,可能快满了,再慢下来。
每收到一个确认后,cwnd 增加 1/cwnd,我们接着上面的过程来,一次发送八个,当八个确认到来的时候,每个确认增加 1/8,八个确认一共 cwnd 增加 1,于是一次能够发送九个,变成了线性增长。
但是线性增长还是增长,还是越来越多,直到有一天,水满则溢,出现了拥塞,这时候一般就会一下子降低倒水的速度,等待溢出的水慢慢渗下去。
拥塞的一种表现形式是丢包,需要超时重传,这个时候,将 sshresh 设为 cwnd/2,将 cwnd 设为 1,重新开始慢启动。这真是一旦超时重传,马上回到解放前。但是这种方式太激进了,将一个高速的传输速度一下子停了下来,会造成网络卡顿。
当接收端发现丢了一个中间包的时候,发送三次前一个包的 ACK,于是发送端就会快速的重传,不必等待超时再重传。TCP 认为这种情况不严重,因为大部分没丢,只丢了一小部分,cwnd 减半为 cwnd/2,然后 sshthresh = cwnd,当三个包返回的时候,cwnd = sshthresh +3,也就是没有一夜回到解放前,而是还在比较高的值,呈线性增长。
TCP BBR 拥塞算法
它企图找到一个平衡点,就是通过不断的加快发送速度,将管道填满,但是不要填满中间设备的缓存,因为这样时延会增加,在这个平衡点可以很好的达到高带宽和低时延的平衡
TCP协议(下)的更多相关文章
- TCP协议下大数据传输IOCP乱序问题
毕业后稀里糊涂的闭门造车了两年,自己的独立博客也写了两年,各种乱七八糟,最近准备把自己博客废了,现在来看了下这两年写的对我来说略微有点意义的文章只此一篇,转载过来以作留念. 写的很肤浅且凌乱,请见谅. ...
- TCP协议下的服务端并发,GIL全局解释器锁,死锁,信号量,event事件,线程q
TCP协议下的服务端并发,GIL全局解释器锁,死锁,信号量,event事件,线程q 一.TCP协议下的服务端并发 ''' 将不同的功能尽量拆分成不同的函数,拆分出来的功能可以被多个地方使用 TCP服务 ...
- tcp协议下的Socket
import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.net ...
- TCP协议下Socket的基础编程类型
套接字的基本操作有: 创建(socket).命名(bind).侦听(listen).连接(accept).关闭(shutdown).发送(send).接受(recv). 下面逐个分析: 一.创建(so ...
- 《java入门第一季》之tcp协议下的网络编程
tcp协议相对于udp更加安全. 首先看一下需求:服务器端开启,多个客户端同时向服务器发送数据,看哪个客户端先到达. 说明:这里我开启三个电脑实验,一台电脑写服务器端的程序,两台电脑开客户端的程序.服 ...
- 基于tcp协议下粘包现象和解决方案,socketserver
一.缓冲区 每个 socket 被创建后,都会分配两个缓冲区,输入缓冲区和输出缓冲区.write()/send() 并不立即向网络中传输数据,而是先将数据写入缓冲区中,再由TCP协议将数据从缓冲区发送 ...
- 在TCP协议下的数据传送
本人小白菜逼一枚,,,,刚建立博客,也写不了太深入的,就写点上课的笔记什么的.有错误希望广大博友指出,我一定虚心学习接收改正. 我的新浪邮箱:liudaohui0805@sina.com 我的QQ邮箱 ...
- tcp协议下粘包问题的产生及解决方案
1 tcp有粘包及udp无粘包 - TCP 是面向连接的,面向流的可靠协议:发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据, 合并成 ...
- 《java入门第一季》之tcp协议下的网络编程c/s实现通信交互
需求:客户端向服务器发送数据,服务器端收到数据后向客户端返回数据: 还是使用两台电脑,一台客户端,一台服务器. 客户端代码: import java.io.IOException; import ja ...
- 《java入门第一季》之tcp协议下的编程实现键盘录入数据不断地往服务器端发送数据案例
这里要封装通道流,封装键盘录入数据流. 同样地,还是两台电脑.一个客户端,一个服务器. 客户端代码: import java.io.BufferedReader; import java.io.Buf ...
随机推荐
- 微信小程序音乐播放器组件
wxml <image bindtap="click" src="{{isPlay?'/images/':'/images/'}}"/> JS Pa ...
- GoCN每日新闻(2019-10-02)
GoCN每日新闻(2019-10-02) GoCN每日新闻(2019-10-02) 1. Golang中基于Gin和Casbin的web使用方式 https://dev.to/maxwellhertz ...
- MATLAB 可以画的各种类型的图总结
MATLAB® 提供了各种可用来绘制数据图的函数.下表对常见的图形函数进行了分类和说明. 线图 数据分布图 离散数据图 极坐标图 等高线图 向量场 plot area stairs polarplot ...
- Koa 脚手架创建项目
Koa 脚手架创建项目 通过应用 koa 脚手架生成工具 可以快速创建一个基于 koa2 的应用的骨架 全局安装koa npm install koa-generator -g //必须安装到全局 创 ...
- 还在用难用的AssetBundle?快来运用Unity新的可寻址资源系统,助力游戏开发
Unity Addressables可寻址资源系统是一个强大的Unity资源包,它能够帮助解决游戏开发中最重要的一些挑战:高效率和轻松的内容管理. 在管理游戏资源时,往往很难维持好的标准,从而避免让项 ...
- bookdown - 撰写和发表自己的网络书籍/文档
BOOKDOWN官网 - bookdown上有不少人发布了自己的电子书 bookdown-demo (一个demo,github源码)- Rstudio出品,Yihui Xie开发,著名单细胞课程在用 ...
- apicloud打包成apk
前言:本文是打包vue项目,其他项目也是这样打包 页面的开发过程跟我们平时开发一样,利用vue把页面全部完成,最后进行npm run build将项目打包. 接下来就是apicloud打包的过程,首先 ...
- 【python基础】argparse模块
参考 1. argumentparser-objects: 2. argparse.ArgumentParser()用法解析:
- [LeetCode] 280. Wiggle Sort 摆动排序
Given an unsorted array nums, reorder it in-place such that nums[0] <= nums[1] >= nums[2] < ...
- bat文件注释(jenkins中windows命令行中可以使用)
1.BAT文件中如何注释:1.:: 注释内容(第一个冒号后也可以跟任何一个非字母数字的字符)2.rem 注释内容(不能出现重定向符号和管道符号)3.echo 注释内容(不能出现重定向符号和管道符号)〉 ...