[LeetCode] 377. Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
解法1:递归。按照前面I, II的思路用递归来解,会TLE,比如:OJ一个test case为[4,1,2] 32,结果是39882198,用递归需要好几秒时间。
解法2:动态规划DP来解。这道题类似于322. Coin Change ,建一个一维数组dp,dp[i]表示目标数target为i时解的个数,从1遍历到target,对于每一个数i,遍历nums数组,如果i>=x, dp[i] += dp[i - x]。比如[1,2,3] 4,当计算dp[3]时,3可以拆分为1+x,而x即为dp[2],3也可以拆分为2+x,x为dp[1],3同样可以拆为3+x,x为dp[0],把所有情况加起来就是组成3的所有解。
Java: Recursive
public int combinationSum4(int[] nums, int target) {
if (target == 0) {
return 1;
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += combinationSum4(nums, target - nums[i]);
}
}
return res;
}
Java:
private int[] dp; public int combinationSum4(int[] nums, int target) {
dp = new int[target + 1];
Arrays.fill(dp, -1);
dp[0] = 1;
return helper(nums, target);
} private int helper(int[] nums, int target) {
if (dp[target] != -1) {
return dp[target];
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += helper(nums, target - nums[i]);
}
}
dp[target] = res;
return res;
}
Java:
public int combinationSum4(int[] nums, int target) {
int[] comb = new int[target + 1];
comb[0] = 1;
for (int i = 1; i < comb.length; i++) {
for (int j = 0; j < nums.length; j++) {
if (i - nums[j] >= 0) {
comb[i] += comb[i - nums[j]];
}
}
}
return comb[target];
}
Java:
class Solution {
public int combinationSum4(int[] nums, int target) {
if(nums==null || nums.length==0)
return 0; int[] dp = new int[target+1]; dp[0]=1; for(int i=0; i<=target; i++){
for(int num: nums){
if(i+num<=target){
dp[i+num]+=dp[i];
}
}
} return dp[target];
}
}
Python:
class Solution(object):
def combinationSum4(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
dp = [0] * (target+1)
dp[0] = 1
nums.sort() for i in xrange(1, target+1):
for j in xrange(len(nums)):
if nums[j] <= i:
dp[i] += dp[i - nums[j]]
else:
break return dp[target]
Python:
class Solution(object):
def combinationSum4(self, nums, target):
nums, combs = sorted(nums), [1] + [0] * (target)
for i in range(target + 1):
for num in nums:
if num > i: break
if num == i: combs[i] += 1
if num < i: combs[i] += combs[i - num]
return combs[target]
C++:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
sort(nums.begin(), nums.end()); for (int i = 1; i <= target; ++i) {
for (int j = 0; j < nums.size() && nums[j] <= i; ++j) {
dp[i] += dp[i - nums[j]];
}
} return dp[target];
}
};
类似题目:
[LeetCode] 322. Coin Change 硬币找零
[LeetCode] 39. Combination Sum 组合之和
[LeetCode] 40. Combination Sum II 组合之和 II
[LeetCode] 216. Combination Sum III 组合之和 III
All LeetCode Questions List 题目汇总
[LeetCode] 377. Combination Sum IV 组合之和 IV的更多相关文章
- [LeetCode] 216. Combination Sum III 组合之和 III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [leetcode]40. Combination Sum II组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和 II
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 377. Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum III 组合之和之三
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [LeetCode] Combination Sum II 组合之和之二
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...
- LeetCode OJ:Combination Sum II (组合之和 II)
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...
- 377 Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
随机推荐
- [Reproduced] How to Improve Code Quality?
How to Improve Code Quality? Ref: https://www.perforce.com/blog/sca/what-code-quality-and-how-improv ...
- tkinter代码正式版
可以绘图了. import json import tkinter as tk from tkinter import filedialog from tkinter import LabelFram ...
- Python 推送RabbitMQ
username = 'xxxxxxxx' pwd = 'xxxxxxxx' user_pwd = pika.PlainCredentials(username, pwd) s_conn = pika ...
- pipy配置镜像源
新电脑第一次使用使用pip命令下载贼慢 我们需要使用国内pipy镜像,参考如下 https://mirrors.tuna.tsinghua.edu.cn/help/pypi/ 所以只要设置一下就行了: ...
- xml的运用
<?xml version="1.0" encoding="utf-8"?><class> <student> <na ...
- jvm 堆栈概念
关于JVM的工作原理以及调优是一个向往已久的模块,终于有幸接触到:http://pengjiaheng.iteye.com/blog/518623 那就顺着这个思路,来梳理一下自己看到后的结论和感想. ...
- 【Spring】如何配置多个applicationContext.xml文件
在web.xml中通过contextConfigLocation配置spring 开发Java Web程序,使用ssh架构时,默认情况下,Spring的配置文件applicationContext.x ...
- django-列表分页和排序
视图函数views.py # 种类id 页码 排序方式 # restful api -> 请求一种资源 # /list?type_id=种类id&page=页码&sort=排序方 ...
- SQL Server 父子迭代查询语句,树状查询
这个也有用: -- Get childs by parent idWITH TreeAS( SELECT Id,ParentId FROM dbo.Node P WHERE P.Id = 21 -- ...
- LeetCode 873. Length of Longest Fibonacci Subsequence
原题链接在这里:https://leetcode.com/problems/length-of-longest-fibonacci-subsequence/ 题目: A sequence X_1, X ...