先看一题,洛谷2397:

题目背景

自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你

题目描述

[h1]udp2:第一题因为语言性质问题,比赛结束后将所有c/c++的程序的内存调为2.2mb后重测。[/h1]

他让redbag找众数

他还特意表示,这个众数出现次数超过了一半

一共n个数,而且保证有

n<=2000000

而且每个数<2^31-1

代码

#include<bits/stdc++.h>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
int n,cnt,now,x;
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&x);
if(x==now) cnt++;
else if(cnt==) now=x,cnt++;
else if(now!=x) cnt--;
}
printf("%d\n",now);
return ;
}

然后,知道了像这样的,求众数的方法叫做摩尔投票法(Moore Voting),而且,它是可以求大于等于[n/3]的众数的!

用类似的方法更新两个房间里的数,(可能会有两个众数,也可能只有一个),然后验证两个待选众数是否正确。

代码

public:
vector<int> majorityElement(vector<int>& nums) { int cnt1 = , cnt2 = ;
int a, b; for(int n: nums){ if (cnt1 == || n == a){
cnt1++; a = n;
}
else if (cnt2 == || n == b){
cnt2++; b = n;
}
else{
cnt1--; cnt2--;
}
} cnt1 = cnt2 = ;
for(int n: nums){
if (n == a) cnt1++;
else if (n == b) cnt2++;
} vector<int> result;
if (cnt1 > nums.size()/) result.push_back(a);
if (cnt2 > nums.size()/) result.push_back(b);
return result;
}
};

UPD:

在F大爷的博客上还看到了一些神奇的东西。

链接

题意

给定一个长度为n的数列,每个数都是1-n以内。

m次询问,每次询问一个区间,再给定s和k个下标。

如果区间内有一个数出现超过区间长度一半,答案是那个数,否则答案是s,然后把k个下标的位置的数字改成这次的答案。

求每一次的答案和最后整个数列的答案。 n,m<=500000,∑k <=1000000

做法

求众数的做法满足区间加法,所以可以用线段树来维护,每次从区间中找到那个数字。

而我们不能保证最后的数一定出现了超过一半次,

我们可以对每个数开一个平衡树来记录它所出现的位置集合,修改操作也直接在平衡树上进行。

%%%%FallDream!!!!


来自PaperCloud的博客,未经允许,请勿转载,TKS!

Leetcode Majority Element系列 摩尔投票法的更多相关文章

  1. LeetCode题解-----Majority Element II 摩尔投票法

    题目描述: Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The a ...

  2. [LeetCode] Majority Element II 求众数之二

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  3. [LeetCode] Majority Element 求众数

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  4. [LeetCode] Majority Element II 求大多数之二

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. Note: The a ...

  5. [LeetCode] Majority Element 求大多数

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  6. Moore majority vote algorithm(摩尔投票算法)

    Boyer-Moore majority vote algorithm(摩尔投票算法) 简介 Boyer-Moore majority vote algorithm(摩尔投票算法)是一种在线性时间O( ...

  7. 【Warrior刷题笔记】力扣169. 多数元素 【排序 || 哈希 || 随机算法 || 摩尔投票法】详细注释 不断优化 极致压榨

    题目 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/majority-element/ 注意,该题在LC中被标注为easy,所以我们更多应该关 ...

  8. 2016.5.18——leetcode:Majority Element

    Majority Element 本题收获: 1.初步了解hash,nth_element的用法 2.题目的常规思路 题目: Given an array of size n, find the ma ...

  9. 剑指 Offer 39. 数组中出现次数超过一半的数字 + 摩尔投票法

    剑指 Offer 39. 数组中出现次数超过一半的数字 Offer_39 题目描述 方法一:使用map存储数字出现的次数 public class Offer_39 { public int majo ...

随机推荐

  1. Windows系统中环境变量不展开的问题

    Windows系统中环境变量不展开的问题 问题现象:Windows.System32等系统目录里命令,无法通过Path搜索路径来执行.查看Path环境变量结果如下: D:\>echo %Path ...

  2. 提高QPS

    常用方案 1.异步化+MQ 即非阻塞,化繁为简,拿到你需要处理的资源后尽快回复.适用于事务处理场景,且无需对上游返回数据场景. 2.无锁设计 本质上是要降低锁冲突,基于数据版本的乐观锁 有效的减少了互 ...

  3. Django:ORM介绍

    1.ORM概念 ​ 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. ​ 简单的说,ORM是通过使用描述 ...

  4. 3.怪异盒模型box-sizing?弹性盒模型|盒布局?【HTML】

    在标准模式下的盒模型:盒子总宽度/高度=width/height+padding+border+margin 在怪异模式下的盒模型下,盒子的总宽度和高度是包含内边距padding和边框border宽度 ...

  5. C++ Win32 遍历窗口

    查找指定窗口 #include <iostream> #include <windows.h> using namespace std; int main() { TCHAR ...

  6. 常见SVN图标的含义

    转自:https://www.cnblogs.com/genhaosan/articles/5129791.html 灰色向右箭头:本地修改过 蓝色向左箭头:SVN上修改过 灰色向右且中间有个加号的箭 ...

  7. [LeetCode] 63. 不同路径 II ☆☆☆(动态规划)

    描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在 ...

  8. MySQL Hardware--RAID卡常用信息查看

    MegaRAID信息查看 #查raid卡信息(生产商.电池信息及所支持的raid级别) /usr/local/sbin/MegaCli -AdpAllInfo -aALL |grep -E " ...

  9. Flask之WTfroms组件

    一.WTfroms简介 WTForms插件是类似于django的form组件的插件,可以帮我们写标签,校验数据等. 二.安装与使用 安装: pip install WTForms 使用: from w ...

  10. IDEA远程连接和上传文件到服务器

    公司电脑是win,所以远程控制服务器就不能用之前自己笔记本ubuntu自带的终端了. 后来在万能的群友的提醒下,IDEA本身就自带了远程功能,摸索了一下,使用IDEA连接服务器并且可以上传文件了. 这 ...