Turn the pokers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1064    Accepted Submission(s): 398

Problem Description
During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down, she decided to flip poker n times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?
 
Input
The input consists of multiple test cases. 
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000). 
The next line contains n integers Xi(0<=Xi<=m).
 
Output
Output the required answer modulo 1000000009 for each test case, one per line.
 
Sample Input
3 4
3 2 3
3 3
3 2 3
 
Sample Output
8
3

Hint

For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)

 

果然又是一道神题目,用到的知识点真心多且有用。
 
快速幂+费马小定理+巧妙的思路
 
费马小定理:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p)因此 a * a^(p-2)  ≡1(mod p),即 a的乘法逆元是a^(p-2)
因此题目需要求组合数:( n!/m!(n-m)! ) mod p =[ n! mod p ]*[ (m! mod p)^(p-2) mod p]*[ ((n-m)! mod p)^(p-2) mod p] mod p
 
多搞几个数据,可以发现,只需找到最少翻动牌个数与最多翻动牌个数即可,中间的状态是连续的,剩下就是排列的问题了。
因为每次翻一张牌,则正面增加1,反面减1,因此翻动的牌数是偶数变化的,又翻的牌可以随机,所以其最多与最少翻动牌数中间每隔一个都是允许出现的情况。
 
官方题解:

最终的结果一定是连续出现的,只需要求出最终的区间。

因为如果对同一张牌进行两次操作,牌的状态不改变。故牌的翻转次数一定是减少偶数次。如果所有数的和是奇数,那么最终结果也一定是奇数。同理,偶数也是一样的。

所以只要递推求出最后的区间,计算sum(C(xi,m)(i=0,1,2。。。)),m是总牌数,xi是在区间内连续的奇数或偶数,在模10^9+9就是最终的答案。

#include <cstdio>
#include <iostream>
#include <cmath>
#define Mod 1000000009
#define max(x,y) ((x)>(y)?x:y)
#define min(x,y) ((x)<(y)?x:y)
using namespace std;
long long J[];
int n,m,a[],l,r,nl,nr;
void Predo(){
J[]=;
for(int i=;i<=;i++)
J[i]=(J[i-]*i)%Mod;
}
long long Q(long long a,long long p){
int e[],k=;
while(p){
e[k++]=p%;
p=p/;
}
long long tmp=;
for(int i=k-;i>=;i--)
if(e[i]) tmp=((tmp*tmp)%Mod*a)%Mod;
else tmp=(tmp*tmp)%Mod;
return tmp;
}
long long C(int n,int m){
return ((J[n]*Q(J[m],Mod-))%Mod*Q(J[n-m],Mod-))%Mod;
}
int main()
{
Predo();
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
int l=r=a[];
for(int i=;i<n;i++){
nl=min(abs(l-a[i]),abs(r-a[i]));
if(l<=a[i]&&a[i]<=r){
if((a[i]-l)%==) nl=;
else nl=;
}
nr=max(l+a[i]<=m?l+a[i]:*m-l-a[i] , r+a[i]<=m?r+a[i]:*m-r-a[i]);
if(m-r<=a[i]&&a[i]<=m-l){
if((a[i]-(m-r))%==) nr=m;
else nr=m-;
}
l=nl;
r=nr;
}
long long ans=;
for(int i=l;i<=r;i=i+)
ans=(ans+C(m,i))%Mod;
printf("%lld\n",ans);
}
return ;
}

HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)的更多相关文章

  1. HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4869 Turn the pokers (2014 多校联合第一场 I)

    HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...

  3. HDU 4869 Turn the pokers(推理)

    HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...

  4. hdu 4869 Turn the pokers (2014多校联合第一场 I)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. hdu 4869 Turn the pokers (思维)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4869 Turn the pokers(思维+组合公式+高速幂)

    pid=4869" target="_blank">Turn the pokers 大意:给出n次操作,给出m个扑克.然后给出n个操作的个数a[i],每一个a[i] ...

  7. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  8. hdu 4869 Turn the pokers(组合数+费马小定理)

    Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...

  9. HDU 4869 Turn the pokers(思维+逆元)

    考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...

随机推荐

  1. 20145120 《Java程序设计》第4周学习总结

    20145120 <Java程序设计>第4周学习总结 教材学习内容总结 -定义子类,加"extends+父类名"以继承父类. -子类只能继承一个父类 -编辑器会检查等号 ...

  2. 小杜同学关于Query的一点知识

    小杜同学关于jQuery的一点知识 1.关于jQuery jQuery就是一个JavaScript的函数库.既然是JS的的函数库,它自然是做JS做的东西了.毕竟jQuery只是用JavaScript编 ...

  3. Careercup - Facebook面试题 - 6026101998485504

    2014-05-02 10:47 题目链接 原题: Given an unordered array of positive integers, create an algorithm that ma ...

  4. 第三章DOM

    1. DOM的概念 D:Document. O:Object.对象可以分为三类, 1. 用户自定义的对象. 2. 内建对象,如Array,Math,Date. 3. 宿主对象,浏览器提供的对象.如wi ...

  5. 原生JS实现苹果菜单

    今天分享下用原生JS实现苹果菜单效果,这个效果的重点有以下几点 图标中心点到鼠标的距离的算法 利用比例计算图标的宽度 代码地址:https://github.com/peng666/blogs/blo ...

  6. LAMP安装配置过程

    Mysql ./configure --prefix=/usr/local/mysql (注意/configure前有“.”,是用来检测你的安装平台的目标特征的,prefix是安装路径) #make ...

  7. 20160730noip模拟赛zld

    codeforces394E 如果没有在凸多边形内一点的限制,答案肯定是 如果不在凸多边形内,那么目标点肯定在凸多边形边上,我们枚举每条边,在每条边上求出距离平方和最小的点,在这些点中求出最小的 我们 ...

  8. 使用EF code first和asp.net mvc4遇到的问题总结

    最近使用EF code first和asp.net mvc4做项目,遇到些问题,记录一下. 一.EF code first 生成外键列问题. 一般情况下,都是先写一个int型外键id属性,然后写一个外 ...

  9. Caching Tutorial

    for Web Authors and Webmasters This is an informational document. Although technical in nature, it a ...

  10. java基础知识回顾之java Thread类学习(五)--java多线程安全问题(锁)同步的前提

    这里举个例子讲解,同步synchronized在什么地方加,以及同步的前提: * 1.必须要有两个以上的线程,才需要同步. * 2.必须是多个线程使用同一个锁. * 3.必须保证同步中只能有一个线程在 ...