HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)
Turn the pokers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1064 Accepted Submission(s): 398
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000).
The next line contains n integers Xi(0<=Xi<=m).
3 2 3
3 3
3 2 3
3
For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)
最终的结果一定是连续出现的,只需要求出最终的区间。
因为如果对同一张牌进行两次操作,牌的状态不改变。故牌的翻转次数一定是减少偶数次。如果所有数的和是奇数,那么最终结果也一定是奇数。同理,偶数也是一样的。
所以只要递推求出最后的区间,计算sum(C(xi,m)(i=0,1,2。。。)),m是总牌数,xi是在区间内连续的奇数或偶数,在模10^9+9就是最终的答案。
#include <cstdio>
#include <iostream>
#include <cmath>
#define Mod 1000000009
#define max(x,y) ((x)>(y)?x:y)
#define min(x,y) ((x)<(y)?x:y)
using namespace std;
long long J[];
int n,m,a[],l,r,nl,nr;
void Predo(){
J[]=;
for(int i=;i<=;i++)
J[i]=(J[i-]*i)%Mod;
}
long long Q(long long a,long long p){
int e[],k=;
while(p){
e[k++]=p%;
p=p/;
}
long long tmp=;
for(int i=k-;i>=;i--)
if(e[i]) tmp=((tmp*tmp)%Mod*a)%Mod;
else tmp=(tmp*tmp)%Mod;
return tmp;
}
long long C(int n,int m){
return ((J[n]*Q(J[m],Mod-))%Mod*Q(J[n-m],Mod-))%Mod;
}
int main()
{
Predo();
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
int l=r=a[];
for(int i=;i<n;i++){
nl=min(abs(l-a[i]),abs(r-a[i]));
if(l<=a[i]&&a[i]<=r){
if((a[i]-l)%==) nl=;
else nl=;
}
nr=max(l+a[i]<=m?l+a[i]:*m-l-a[i] , r+a[i]<=m?r+a[i]:*m-r-a[i]);
if(m-r<=a[i]&&a[i]<=m-l){
if((a[i]-(m-r))%==) nr=m;
else nr=m-;
}
l=nl;
r=nr;
}
long long ans=;
for(int i=l;i<=r;i=i+)
ans=(ans+C(m,i))%Mod;
printf("%lld\n",ans);
}
return ;
}
HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)的更多相关文章
- HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4869 Turn the pokers (2014 多校联合第一场 I)
HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...
- HDU 4869 Turn the pokers(推理)
HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...
- hdu 4869 Turn the pokers (2014多校联合第一场 I)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4869 Turn the pokers (思维)
Turn the pokers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4869 Turn the pokers(思维+组合公式+高速幂)
pid=4869" target="_blank">Turn the pokers 大意:给出n次操作,给出m个扑克.然后给出n个操作的个数a[i],每一个a[i] ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- hdu 4869 Turn the pokers(组合数+费马小定理)
Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...
- HDU 4869 Turn the pokers(思维+逆元)
考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...
随机推荐
- C#中使用SelectionStart属性指定输入框光标位置
今天工作中遇到一个小BUG需要修改,需求为在文本框输入的过程中,如果数字是以0开头则自动消除0 如输入012,则显示12 很容易想到在textbox的text changed事件中判断,如果text是 ...
- 我的第一个python爬虫程序
程序用来爬取糗事百科上的图片的,程序设有超时功能,具有异常处理能力 下面直接上源码: #-*-coding:utf-8-*- ''' Created on 2016年10月20日 @author: a ...
- ios Camera学习笔记
检测设备的摄像头是否可用: - (BOOL) isCameraAvailable{ return [UIImagePickerController isSourceTypeAvailable: UII ...
- git/github在windows上使用
问题描述: git在Windows上的使用 问题解决: (1)下载安装git http://msysgit.github.io/ 到该网址中下载msgit软件 注: 安装msg ...
- oracle 条件:1=1或1=0,动态添加条件
看到where语句中有条件:where 1=1 和 1=2或1<>1 用途: 1=1:是为了添加条件时使用and并列其他条件时使用的(动态连接后续条件) 比如: ...
- ural 1864
题意描述不清 而且还卡精度 ~~ #include <cstdio> #include <cstring> #include <iostream> using ...
- spring测试父类,使用junit-4.4.jar,spring-test.jar
@ContextConfiguration(locations = "classpath:conf/applicationContext.xml") @RunWith(Spring ...
- sun.misc.unsafe类的使用
http://blog.csdn.net/fenglibing/article/details/17138079
- 初识spring与quartz整合实现定时任务
参考资料: http://kevin19900306.iteye.com/blog/1397744 引用自别人的博客: 特别注意一点,与Spring3.1以下版本整合必须使用Quartz1,最初我拿2 ...
- 李洪强iOS开发之keychain的使用
通常情况下,我们用NSUserDefaults存储数据信息,但是对于一些私密信息,比如密码.证书等等,就需要使用更为安全的keychain了.keychain里保存的信息不会因App被删除而丢失,在用 ...