Turn the pokers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1064    Accepted Submission(s): 398

Problem Description
During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down, she decided to flip poker n times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?
 
Input
The input consists of multiple test cases. 
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000). 
The next line contains n integers Xi(0<=Xi<=m).
 
Output
Output the required answer modulo 1000000009 for each test case, one per line.
 
Sample Input
3 4
3 2 3
3 3
3 2 3
 
Sample Output
8
3

Hint

For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)

 

果然又是一道神题目,用到的知识点真心多且有用。
 
快速幂+费马小定理+巧妙的思路
 
费马小定理:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p)因此 a * a^(p-2)  ≡1(mod p),即 a的乘法逆元是a^(p-2)
因此题目需要求组合数:( n!/m!(n-m)! ) mod p =[ n! mod p ]*[ (m! mod p)^(p-2) mod p]*[ ((n-m)! mod p)^(p-2) mod p] mod p
 
多搞几个数据,可以发现,只需找到最少翻动牌个数与最多翻动牌个数即可,中间的状态是连续的,剩下就是排列的问题了。
因为每次翻一张牌,则正面增加1,反面减1,因此翻动的牌数是偶数变化的,又翻的牌可以随机,所以其最多与最少翻动牌数中间每隔一个都是允许出现的情况。
 
官方题解:

最终的结果一定是连续出现的,只需要求出最终的区间。

因为如果对同一张牌进行两次操作,牌的状态不改变。故牌的翻转次数一定是减少偶数次。如果所有数的和是奇数,那么最终结果也一定是奇数。同理,偶数也是一样的。

所以只要递推求出最后的区间,计算sum(C(xi,m)(i=0,1,2。。。)),m是总牌数,xi是在区间内连续的奇数或偶数,在模10^9+9就是最终的答案。

#include <cstdio>
#include <iostream>
#include <cmath>
#define Mod 1000000009
#define max(x,y) ((x)>(y)?x:y)
#define min(x,y) ((x)<(y)?x:y)
using namespace std;
long long J[];
int n,m,a[],l,r,nl,nr;
void Predo(){
J[]=;
for(int i=;i<=;i++)
J[i]=(J[i-]*i)%Mod;
}
long long Q(long long a,long long p){
int e[],k=;
while(p){
e[k++]=p%;
p=p/;
}
long long tmp=;
for(int i=k-;i>=;i--)
if(e[i]) tmp=((tmp*tmp)%Mod*a)%Mod;
else tmp=(tmp*tmp)%Mod;
return tmp;
}
long long C(int n,int m){
return ((J[n]*Q(J[m],Mod-))%Mod*Q(J[n-m],Mod-))%Mod;
}
int main()
{
Predo();
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
int l=r=a[];
for(int i=;i<n;i++){
nl=min(abs(l-a[i]),abs(r-a[i]));
if(l<=a[i]&&a[i]<=r){
if((a[i]-l)%==) nl=;
else nl=;
}
nr=max(l+a[i]<=m?l+a[i]:*m-l-a[i] , r+a[i]<=m?r+a[i]:*m-r-a[i]);
if(m-r<=a[i]&&a[i]<=m-l){
if((a[i]-(m-r))%==) nr=m;
else nr=m-;
}
l=nl;
r=nr;
}
long long ans=;
for(int i=l;i<=r;i=i+)
ans=(ans+C(m,i))%Mod;
printf("%lld\n",ans);
}
return ;
}

HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)的更多相关文章

  1. HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4869 Turn the pokers (2014 多校联合第一场 I)

    HDOJ--4869--Turn the pokers[组合数学+快速幂] 题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次 ...

  3. HDU 4869 Turn the pokers(推理)

    HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...

  4. hdu 4869 Turn the pokers (2014多校联合第一场 I)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. hdu 4869 Turn the pokers (思维)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4869 Turn the pokers(思维+组合公式+高速幂)

    pid=4869" target="_blank">Turn the pokers 大意:给出n次操作,给出m个扑克.然后给出n个操作的个数a[i],每一个a[i] ...

  7. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  8. hdu 4869 Turn the pokers(组合数+费马小定理)

    Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...

  9. HDU 4869 Turn the pokers(思维+逆元)

    考试的时候没有做出来... 想到了答案一定是一段连续的区间,一直在纠结BFS判断最后的可行1数. 原来直接模拟一遍就可以算出来最后的端点... 剩下的就是组合数取模了,用逆元就行了... # incl ...

随机推荐

  1. C# 生成二维码并且在中间加Logo

    今天做项目的时候有个在生成二维码并且在中间加入Logo的需求,动手试了几把,总感觉效果没有之前写的好,就翻出旧代码,果然还是熟悉的味道,生成一张效果图如下 左边是微信里面的,右边是我自己生成的 原理比 ...

  2. z-index兼容问题:关于ie6/7下的z-index

    z-index这个属性其实在挺多地方都会用到,在百度上搜索也有大量关于z-index的篇幅去阐述这个属性,特别是在ie6下的z-index处理有更多的相关文章,本文就不再围绕z-index这一属性的基 ...

  3. jsp的<%@ include file="jsp/common.jsp" %>报错误Duplicate local variable basePath

    将公共引入的文件放到common.jsp中,其他页面引入该jsp即可使用 <%@ page language="java" import="java.util.*& ...

  4. 【技术贴】解决bug mantisbt APPLICATION ERROR #1502 没有找到类别

    解决bug mantisAPPLICATION ERROR #1502 没有找到类别 mantisbt出现1502问题解决:引起问题的原因:当提交的问题有分类,此时删除此分类,就会出现下面的情况.问题 ...

  5. jquerymobile局部渲染的各种刷新

    在JQueryMobile页面在第一次初始化进行一次整体渲染,动态生成的需要局部渲染. 在jquerymobile实现listview局部渲染的方法: function queryPublishOrd ...

  6. Understanding and Using Servlet Filters

    Overview of How Filters Work This section provides an overview of the following topics: How the Serv ...

  7. 一个IT人士的个人经历,给迷失方向的朋友

    这些日子我一直在写一个实时操作系统内核,已有小成了,等写完我会全部公开,希望能够为国内IT的发展尽自己一份微薄的力量.最近看到很多学生朋友和我当年一样没有方向 ,所以把我的经历写出来与大家共勉,希望能 ...

  8. NAMESPACE_ERR: An attempt is made to create or change an object in a way which is incorrect with regard to namespaces.

    解决办法: http://stackoverflow.com/questions/4037125/namespace-err-an-attempt-is-made-to-create-or-chang ...

  9. 从SQL Server中导入/导出Excel的基本方法(转)

    从sql server中导入/导出 excel 的基本方法 /*=========== 导入/导出 excel 的基本方法 ===========*/ 从excel文档中,导入数据到sql数据库中,很 ...

  10. lintcode 中等题:N Queens II N皇后问题 II

    题目: N皇后问题 II 根据n皇后问题,现在返回n皇后不同的解决方案的数量而不是具体的放置布局. 样例 比如n=4,存在2种解决方案 解题: 和上一题差不多,这里只是求数量,这个题目定义全局变量,递 ...