http://acm.hdu.edu.cn/showproblem.php?pid=3280

用了简单的枚举。

Equal Sum Partitions

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 453    Accepted Submission(s): 337

Problem Description
An equal sum partition of a sequence of numbers is a grouping of the numbers (in the same order as the original sequence) in such a way that each group has the same sum. For example, the sequence: 2 5 1 3 3 7 may be grouped as: (2 5) (1 3 3) (7) to yield an equal sum of 7.
Note: The partition that puts all the numbers in a single group is an equal sum partition with the sum equal to the sum of all the numbers in the sequence.
For this problem, you will write a program that takes as input a sequence of positive integers and returns the smallest sum for an equal sum partition of the sequence.
 
Input
The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by a decimal integer M, (1 ≤ M ≤ 10000), giving the total number of integers in the sequence. The remaining line(s) in the dataset consist of the values, 10 per line, separated by a single space. The last line in the dataset may contain less than 10 values.
 
Output
For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the smallest sum for an equal sum partition of the sequence.
 
Sample Input
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
 
Sample Output
1 7
2 21
3 2
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[];
int main()
{
int i,j,t,n,m,sum,cursum,flag ,ans;
scanf("%d",&t);
while(t--)
{
flag=;
memset(a,,sizeof(a));
scanf("%d%d",&n,&m);
for(i=;i<m;i++)
scanf("%d",&a[i]);
for(i=;i<m;i++)
{
sum=;
for(j=;j<=i;j++)
sum+=a[j];
cursum=;
while(j<m)
{
cursum+=a[j];
if(cursum>sum)
break;
else if(cursum==sum)
{
j++;
if(j==m)
{
printf("%d %d\n",n,sum);
flag=;
}
cursum=;
}
else
j++;
if(flag)
break;
} if(flag)
break;
}
if(i==m)
printf("%d %d\n",n,sum);
}
return ;
}
/*
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
*/

区间dp

#include<iostream>
#include<cstdio>
using namespace std;
int dp[][],ans[];
int main()
{
int t,n,m,i,j,k,g,a[];
cin>>t;
while(t--)
{
cin>>n>>m;
ans[]=;
for(i=;i<=m;i++)
{
cin>>a[i];
ans[i]=ans[i-]+a[i];
}
for(k=;k<m;k++)//k不能从1-m,虽然同样个数相同,但是j=2开始,就会使区间减少了一层,
{ //比如i=1,j=2就没有这个区间。
for(i=;i<=m-k;i++)
{
j=i+k;
dp[i][j]=ans[j]-ans[i-];//初始化dp,求出每个区间的和。
for(g=i;g<j;g++)
{//三者的顺序可以随便调换。
if((ans[g]-ans[i-])==dp[g+][j])
dp[i][j]=min(dp[i][j],dp[g+][j]);
if(dp[i][g]==ans[j]-ans[g])
dp[i][j]=min(dp[i][j],dp[i][g]);
if(dp[i][g]==dp[g+][j])
dp[i][j]=min(dp[i][j],dp[i][g]); } }
}
printf("%d %d\n",n,dp[][m]);
} }
/*
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
*/

HDU-3280 Equal Sum Partitions的更多相关文章

  1. HDU 3280 Equal Sum Partitions(二分查找)

    Equal Sum Partitions Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  3. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  4. HDU 1244 Max Sum Plus Plus Plus

    虽然这道题看起来和 HDU 1024  Max Sum Plus Plus 看起来很像,可是感觉这道题比1024要简单一些 前面WA了几次,因为我开始把dp[22][maxn]写成dp[maxn][2 ...

  5. hdu3280Equal Sum Partitions (区间DP)

    Problem Description An equal sum partition of a sequence of numbers is a grouping of the numbers (in ...

  6. D.6661 - Equal Sum Sets

    Equal Sum Sets Let us consider sets of positive integers less than or equal to n. Note that all elem ...

  7. hdu 3415 Max Sum of Max-K-sub-sequence(单调队列)

    题目链接:hdu 3415 Max Sum of Max-K-sub-sequence 题意: 给你一串形成环的数,让你找一段长度不大于k的子段使得和最大. 题解: 我们先把头和尾拼起来,令前i个数的 ...

  8. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  9. 698. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

随机推荐

  1. POJ3080Blue Jeans

    http://poj.org/problem?id=3080 题意 : 给你几个DNA序列,让你找他们的共同的最长的子串,若是子串长度小于3,就输出no significant commonaliti ...

  2. python 判断操作系统类型

    #!/bin/python # import platform def TestPlatform(): print ("----------Operation System--------- ...

  3. servlet会话技术:Cookie

    什么是会话会话可以简单理解为:用户开一个浏览器访问某个网站,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话.会话过程中需要解决的一些问题每个用户在使用浏览器与服务器进 ...

  4. 《数据通信与网络》笔记--TCP中的拥塞控制

    1.拥塞窗口 发送方窗口的大小不仅取决于接收方,而.而且还取决于网络拥塞的情况. 发送方有2种信息:接收方通告的窗口大小和拥塞窗口的大小,实际的窗口大小事这两者中的最小者. 实际窗口大小 = min( ...

  5. IIS 无法打开页面,只能重启的问题

    最终解决方案: 要变通解决此问题,启用 EnableAggressiveMemoryUsage 注册表项在注册表中.当启用了 EnableAggressiveMemoryUsage 注册表项 Http ...

  6. android4.4内核移植

    01 init/目录下Kconfig修改: 956行添加: config PANIC_TIMEOUT int "Default panic timeout" help Set de ...

  7. HDU 4549 M斐波那契数列(矩阵幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549 题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]. 思路:手算一下可以发现 ...

  8. 转:Android 设置屏幕不待机

    本文转载于:http://blog.csdn.net/yudajun/article/details/7748760 Android设置支部待机有两种方法 第一种简单通过设置WindowManager ...

  9. mysqldump批量导出(多张表)表结构及表数据

    Mysql 批量导出表结构(数据) 仅导出结构,不导出数据: 1.导出數據库為dbname的表结构    mysqldump  -h主机地址 -u用户名 -p密码 -d dbname >db.s ...

  10. 8天学通MongoDB——第六天 分片技术

    在mongodb里面存在另一种集群,就是分片技术,跟sql server的表分区类似,我们知道当数据量达到T级别的时候,我们的磁盘,内存 就吃不消了,针对这样的场景我们该如何应对. 一:分片 mong ...