The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices. These two sets are also groups under multiplication. They are called the general linear group $\GL(n)$ and the unitary group $\U(n)$, respectively.

Solution.

(1). $\GL(n)$ is a dense subset of $\M(n)$, the set of all $n\times n$ matrices. Indeed, by the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{cccc} \vLm_1&&*\\ &\vLm_1&\\ &&\ddots&\\ &&&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea},\quad \lm_1=0,\quad \lm_i \neq 0,\ 2\leq i\leq s. \eex$$ We may just replace the $\lm_1=0$ by $\ve>0$ to get an invertible matrix $B$ such that $\sen{A-B}_2=\ve^2$.

(2). $\GL(n)$ is an open subset of $\M(n)$. In fact, by continuity, $$\bex \det A_n=0,\quad A_n\to A\ra \det A=0. \eex$$

(3). $\U(n)$ is a bounded, closed subset of $\M(n)$.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. NGUI系列教程九(自制ListView)

    在NGUI中可以很方便的实现ListView的控件,ListView就好比IOS或Android平台中使用手势上下拖动的控件.在Unity3D中实现ListView的原理无非就两种,第一种是摄像机不动 ...

  2. iOS 的UINavigationController详解与使用添加UIBarButtonItem

    转发自:http://blog.csdn.net/totogo2010/article/details/7681879 分类: iOS开发入门2012-06-21 11:10 53077人阅读 评论( ...

  3. cocos2dx之Lua调用C++

    现在cocos2dx3.8自己封装了以前的toLua++,比以前更好用了. 先来看一下整体步骤: 1.编写一个.ini文件. 2,修改genbindings.py脚本. 3,执行genbindings ...

  4. CSS定义字体间距 字体行与行间距

    CSS定义字体行间距 line-height:xxpx; CSS定义字体间距 下面我们讲述一下CSS的文本属性,还是先来看一下文本属性的详细列表: 属性     属性含义     属性值 Word-s ...

  5. The 6th Zhejiang Provincial Collegiate Programming Contest->Problem I:A Stack or A Queue?

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3210 题意:给出stack和queue的定义,一个是先进后出(FILO), ...

  6. poj 3301 Texas Trip 三分法

    思路:三分法求解凸函数的极值,三分法介绍在这:http://hi.baidu.com/czyuan_acm/item/81b21d1910ea729c99ce33db 很容易就可以推出旋转后的坐标: ...

  7. PreparedStatement的用法

    转载:http://www.cnblogs.com/raymond19840709/archive/2008/05/12/1192948.html jdbc(java database connect ...

  8. SQLite入门与分析(三)---内核概述(1)

    写在前面:从本章开始,我们开始进入SQLite的内核.为了能更好的理解SQLite,我先从总的结构上讨论一下内核,从全局把握SQLite很重要.SQLite的内核实现不是很难,但是也不是很简单.总的来 ...

  9. 新的HTTP框架:Daraja Framework

    https://www.habarisoft.com/daraja_framework.html

  10. 再探Tomcat

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmQAAADyCAIAAABs006cAAAgAElEQVR4nO2d228b1RaH+2/l9RQhQE