一、简介

  由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete。程序员忘记 delete,流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见。用智能指针便可以有效缓解这类问题,本文主要讲解参见的智能指针的用法。包括:std::auto_ptr、boost::scoped_ptr、boost::shared_ptr、boost::scoped_array、boost::shared_array、boost::weak_ptr、boost::intrusive_ptr你可能会想,如此多的智能指针就为了解决new、delete匹配问题,真的有必要吗?看完这篇文章后,我想你心里自然会有答案。下面就按照顺序讲解如上 7 种智能指针(smart_ptr)。

二、具体使用

1、总括

  对于编译器来说,智能指针实际上是一个栈对象,并非指针类型,在栈对象生命期即将结束时,智能指针通过析构函数释放有它管理的堆内存。所有智能指针都重载了“operator->”操作符,直接返回对象的引用,用以操作对象。访问智能指针原来的方法则使用“.”操作符。

  访问智能指针包含的裸指针则可以用 get() 函数。由于智能指针是一个对象,所以if (my_smart_object)永远为真,要判断智能指针的裸指针是否为空,需要这样判断:if (my_smart_object.get())。

  智能指针包含了 reset() 方法,如果不传递参数(或者传递 NULL),则智能指针会释放当前管理的内存。如果传递一个对象,则智能指针会释放当前对象,来管理新传入的对象。

  我们编写一个测试类来辅助分析:

class Simple {
public:
Simple(int param = ) {
number = param;
std::cout << "Simple: " << number << std::endl;
} ~Simple() {
std::cout << "~Simple: " << number << std::endl;
} void PrintSomething() {
std::cout << "PrintSomething: " << info_extend.c_str() << std::endl;
} std::string info_extend;
int number;
};

2、std::auto_ptr

  std::auto_ptr 属于 STL,当然在 namespace std 中,包含头文件 #include<memory> 便可以使用。std::auto_ptr 能够方便的管理单个堆内存对象。

  我们从代码开始分析:

void TestAutoPtr() {
std::auto_ptr<Simple> my_memory(new Simple()); // 创建对象,输出:Simple:1
if (my_memory.get()) { // 判断智能指针是否为空
my_memory->PrintSomething(); // 使用 operator-> 调用智能指针对象中的函数
my_memory.get()->info_extend = "Addition"; // 使用 get() 返回裸指针,然后给内部对象赋值
my_memory->PrintSomething(); // 再次打印,表明上述赋值成功
(*my_memory).info_extend += " other"; // 使用 operator* 返回智能指针内部对象,然后用“.”调用智能指针对象中的函数
my_memory->PrintSomething(); // 再次打印,表明上述赋值成功
}
}

  my_memory 栈对象即将结束生命期,析构堆对象 Simple(1)

  执行结果为:

Simple: 1

PrintSomething:

PrintSomething: Addition

PrintSomething: Addition other

~Simple: 1

  上述为正常使用 std::auto_ptr 的代码,一切似乎都良好,无论如何不用我们显示使用该死的delete 了。

  其实好景不长,我们看看如下的另一个例子:

void TestAutoPtr2() {
std::auto_ptr<Simple> my_memory(new Simple());
if (my_memory.get()) {
std::auto_ptr<Simple> my_memory2; // 创建一个新的 my_memory2 对象
my_memory2 = my_memory; // 复制旧的 my_memory 给 my_memory2
my_memory2->PrintSomething(); // 输出信息,复制成功
my_memory->PrintSomething(); // 崩溃
}
}

  最终如上代码导致崩溃,如上代码时绝对符合 C++ 编程思想的,居然崩溃了,跟进std::auto_ptr 的源码后,我们看到,罪魁祸首是“my_memory2 = my_memory”,这行代码,my_memory2 完全夺取了 my_memory 的内存管理所有权,导致 my_memory 悬空,最后使用时导致崩溃。

  所以,使用 std::auto_ptr 时,绝对不能使用“operator=”操作符。作为一个库,不允许用户使用,确没有明确拒绝[1],多少会觉得有点出乎预料。

  看完 std::auto_ptr 好景不长的第一个例子后,让我们再来看一个:

void TestAutoPtr3() {
std::auto_ptr<Simple> my_memory(new Simple()); if (my_memory.get()) {
my_memory.release();
}
}

  执行结果为:

  Simple: 1

  看到什么异常了吗?我们创建出来的对象没有被析构,没有输出“~Simple: 1”,导致内存泄露。当我们不想让 my_memory 继续生存下去,我们调用 release() 函数释放内存,结果却导致内存泄露(在内存受限系统中,如果my_memory占用太多内存,我们会考虑在使用完成后,立刻归还,而不是等到 my_memory 结束生命期后才归还)。

  正确的代码应该为:

void TestAutoPtr3() {
std::auto_ptr<Simple> my_memory(new Simple());
if (my_memory.get()) {
Simple* temp_memory = my_memory.release();
delete temp_memory;
}
}

  或

void TestAutoPtr3() {
std::auto_ptr<Simple> my_memory(new Simple());
if (my_memory.get()) {
my_memory.reset(); // 释放 my_memory 内部管理的内存
}
}

  原来 std::auto_ptr 的 release() 函数只是让出内存所有权,这显然也不符合 C++ 编程思想。

  总结:std::auto_ptr 可用来管理单个对象的对内存,但是,请注意如下几点:

  (1)    尽量不要使用“operator=”。如果使用了,请不要再使用先前对象。

  (2)    记住 release() 函数不会释放对象,仅仅归还所有权。

  (3)    std::auto_ptr 最好不要当成参数传递(读者可以自行写代码确定为什么不能)。

  (4)    由于 std::auto_ptr 的“operator=”问题,有其管理的对象不能放入 std::vector 等容器中。

  (5)    ……

  使用一个 std::auto_ptr 的限制还真多,还不能用来管理堆内存数组,这应该是你目前在想的事情吧,我也觉得限制挺多的,哪天一个不小心,就导致问题了。

  由于 std::auto_ptr 引发了诸多问题,一些设计并不是非常符合 C++ 编程思想,所以引发了下面 boost 的智能指针,boost 智能指针可以解决如上问题。

  让我们继续向下看。

3、boost::scoped_ptr

  boost::scoped_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。boost::scoped_ptr 跟 std::auto_ptr 一样,可以方便的管理单个堆内存对象,特别的是,boost::scoped_ptr 独享所有权,避免了 std::auto_ptr恼人的几个问题。

  我们还是从代码开始分析:

void TestScopedPtr() {
boost::scoped_ptr<Simple> my_memory(new Simple());
if (my_memory.get()) {
my_memory->PrintSomething();
my_memory.get()->info_extend = "Addition";
my_memory->PrintSomething();
(*my_memory).info_extend += " other";
my_memory->PrintSomething(); my_memory.release(); // 编译 error: scoped_ptr 没有 release 函数
std::auto_ptr<Simple> my_memory2;
my_memory2 = my_memory; // 编译 error: scoped_ptr 没有重载 operator=,不会导致所有权转移
}
}

  首先,我们可以看到,boost::scoped_ptr 也可以像 auto_ptr 一样正常使用。但其没有release() 函数,不会导致先前的内存泄露问题。其次,由于 boost::scoped_ptr 是独享所有权的,所以明确拒绝用户写“my_memory2 = my_memory”之类的语句,可以缓解 std::auto_ptr 几个恼人的问题。

由于 boost::scoped_ptr 独享所有权,当我们真真需要复制智能指针时,需求便满足不了了,如此我们再引入一个智能指针,专门用于处理复制,参数传递的情况,这便是如下的boost::shared_ptr。

4、boost::shared_ptr

  boost::shared_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。在上面我们看到 boost::scoped_ptr 独享所有权,不允许赋值、拷贝,boost::shared_ptr 是专门用于共享所有权的,由于要共享所有权,其在内部使用了引用计数。boost::shared_ptr 也是用于管理单个堆内存对象的。

  我们还是从代码开始分析:

void TestSharedPtr(boost::shared_ptr<Simple> memory) {  // 注意:无需使用 reference (或 const reference)
memory->PrintSomething();
std::cout << "TestSharedPtr UseCount: " << memory.use_count() << std::endl;
} void TestSharedPtr2() {
boost::shared_ptr<Simple> my_memory(new Simple());
if (my_memory.get()) {
my_memory->PrintSomething();
my_memory.get()->info_extend = "Addition";
my_memory->PrintSomething();
(*my_memory).info_extend += " other";
my_memory->PrintSomething();
} std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl;
TestSharedPtr(my_memory);
std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl; //my_memory.release();// 编译 error: 同样,shared_ptr 也没有 release 函数
}

  执行结果为:

Simple: 1

PrintSomething:

PrintSomething: Addition

PrintSomething: Addition other

TestSharedPtr2 UseCount: 1

PrintSomething: Addition other

TestSharedPtr UseCount: 2

TestSharedPtr2 UseCount: 1

~Simple: 1

  boost::shared_ptr 也可以很方便的使用。并且没有 release() 函数。关键的一点,boost::shared_ptr 内部维护了一个引用计数,由此可以支持复制、参数传递等。boost::shared_ptr 提供了一个函数 use_count() ,此函数返回 boost::shared_ptr 内部的引用计数。查看执行结果,我们可以看到在 TestSharedPtr2 函数中,引用计数为 1,传递参数后(此处进行了一次复制),在函数TestSharedPtr 内部,引用计数为2,在 TestSharedPtr 返回后,引用计数又降低为 1。当我们需要使用一个共享对象的时候,boost::shared_ptr 是再好不过的了。

  在此,我们已经看完单个对象的智能指针管理,关于智能指针管理数组,我们接下来讲到。

5、boost::scoped_array

  boost::scoped_array 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

boost::scoped_array 便是用于管理动态数组的。跟 boost::scoped_ptr 一样,也是独享所有权的。

  我们还是从代码开始分析:

void TestScopedArray() {
boost::scoped_array<Simple> my_memory(new Simple[]); // 使用内存数组来初始化
if (my_memory.get()) {
my_memory[].PrintSomething();
my_memory.get()[].info_extend = "Addition";
my_memory[].PrintSomething();
(*my_memory)[].info_extend += " other"; // 编译 error,scoped_ptr 没有重载 operator*
my_memory[].release(); // 同上,没有 release 函数
boost::scoped_array<Simple> my_memory2;
my_memory2 = my_memory; // 编译 error,同上,没有重载 operator=
}
}

  boost::scoped_array 的使用跟 boost::scoped_ptr 差不多,不支持复制,并且初始化的时候需要使用动态数组。另外,boost::scoped_array 没有重载“operator*”,其实这并无大碍,一般情况下,我们使用 get() 函数更明确些。

  下面肯定应该讲 boost::shared_array 了,一个用引用计数解决复制、参数传递的智能指针类。

6、boost::shared_array

  boost::shared_array 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

  由于 boost::scoped_array 独享所有权,显然在很多情况下(参数传递、对象赋值等)不满足需求,由此我们引入 boost::shared_array。跟 boost::shared_ptr 一样,内部使用了引用计数。

我们还是从代码开始分析:

void TestSharedArray(boost::shared_array<Simple> memory) {  // 注意:无需使用 reference (或 const reference)
std::cout << "TestSharedArray UseCount: " << memory.use_count() << std::endl;
} void TestSharedArray2() {
boost::shared_array<Simple> my_memory(new Simple[]);
if (my_memory.get()) {
my_memory[].PrintSomething();
my_memory.get()[].info_extend = "Addition 00";
my_memory[].PrintSomething();
my_memory[].PrintSomething();
my_memory.get()[].info_extend = "Addition 11";
my_memory[].PrintSomething();
//(*my_memory)[0].info_extend += " other"; // 编译 error,scoped_ptr 没有重载 operator*
}
std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl;
TestSharedArray(my_memory);
std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl;
}

  执行结果为:

Simple: 0

Simple: 0

PrintSomething:

PrintSomething: Addition 00

PrintSomething:

PrintSomething: Addition 11

TestSharedArray2 UseCount: 1

TestSharedArray UseCount: 2

TestSharedArray2 UseCount: 1

~Simple: 0

~Simple: 0

  跟 boost::shared_ptr 一样,使用了引用计数,可以复制,通过参数来传递。

  至此,我们讲过的智能指针有std::auto_ptr、boost::scoped_ptr、boost::shared_ptr、boost::scoped_array、boost::shared_array。这几个智能指针已经基本够我们使用了,90% 的使用过标准智能指针的代码就这 5 种。可如下还有两种智能指针,它们肯定有用,但有什么用处呢,一起看看吧。

7、boost::weak_ptr

  boost::weak_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

  在讲 boost::weak_ptr 之前,让我们先回顾一下前面讲解的内容。似乎boost::scoped_ptr、boost::shared_ptr 这两个智能指针就可以解决所有单个对象内存的管理了,这儿还多出一个 boost::weak_ptr,是否还有某些情况我们没纳入考虑呢?

  回答:有。首先 boost::weak_ptr 是专门为 boost::shared_ptr 而准备的。有时候,我们只关心能否使用对象,并不关心内部的引用计数。boost::weak_ptr 是 boost::shared_ptr 的观察者(Observer)对象,观察者意味着 boost::weak_ptr 只对 boost::shared_ptr 进行引用,而不改变其引用计数,当被观察的 boost::shared_ptr 失效后,相应的 boost::weak_ptr 也相应失效。

  我们还是从代码开始分析:

void TestWeakPtr() {
boost::weak_ptr<Simple> my_memory_weak;
boost::shared_ptr<Simple> my_memory(new Simple()); std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl;
my_memory_weak = my_memory;
std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl;
}

  执行结果为:

Simple: 1

TestWeakPtr boost::shared_ptr UseCount: 1

TestWeakPtr boost::shared_ptr UseCount: 1

~Simple: 1

我们看到,尽管被赋值了,内部的引用计数并没有什么变化,当然,读者也可以试试传递参数等其他情况。

现在要说的问题是,boost::weak_ptr 到底有什么作用呢?从上面那个例子看来,似乎没有任何作用,其实 boost::weak_ptr 主要用在软件架构设计中,可以在基类(此处的基类并非抽象基类,而是指继承于抽象基类的虚基类)中定义一个 boost::weak_ptr,用于指向子类的boost::shared_ptr,这样基类仅仅观察自己的 boost::weak_ptr 是否为空就知道子类有没对自己赋值了,而不用影响子类 boost::shared_ptr 的引用计数,用以降低复杂度,更好的管理对象。

    8、boost::intrusive_ptr

  boost::intrusive_ptr属于 boost 库,定义在 namespace boost 中,包含头文件#include<boost/smart_ptr.hpp> 便可以使用。

  讲完如上 6 种智能指针后,对于一般程序来说 C++ 堆内存管理就够用了,现在有多了一种boost::intrusive_ptr,这是一种插入式的智能指针,内部不含有引用计数,需要程序员自己加入引用计数,不然编译不过。

三、总结

  如上讲了这么多智能指针,有必要对这些智能指针做个总结:

  1、在可以使用 boost 库的场合下,拒绝使用 std::auto_ptr,因为其不仅不符合 C++ 编程思想,而且极容易出错[2]。

  2、在确定对象无需共享的情况下,使用 boost::scoped_ptr(当然动态数组使用boost::scoped_array)。

  3、在对象需要共享的情况下,使用 boost::shared_ptr(当然动态数组使用boost::shared_array)。

  4、在需要访问 boost::shared_ptr 对象,而又不想改变其引用计数的情况下,使用boost::weak_ptr,一般常用于软件框架设计中。

  5、最后一点,也是要求最苛刻一点:在你的代码中,不要出现 delete 关键字(或 C 语言的free 函数),因为可以用智能指针去管理。

转自:http://blog.csdn.net/xt_xiaotian/article/details/5714477

【转】C++ 智能指针详解的更多相关文章

  1. 【C++】智能指针详解(一):智能指针的引入

    智能指针是C++中一种利用RAII机制(后面解释),通过对象来管理指针的一种方式. 在C++中,动态开辟的内存需要我们自己去维护,在出函数作用域或程序异常退出之前,我们必须手动释放掉它,否则的话就会引 ...

  2. [转]C++ 智能指针详解

    转自:http://blog.csdn.net/xt_xiaotian/article/details/5714477 C++ 智能指针详解 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每 ...

  3. C++ 智能指针详解(转)

    C++ 智能指针详解   一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最终导致没有 delete,异常 ...

  4. [C++11新特性] 智能指针详解

    动态内存的使用很容易出问题,因为确保在正确的时间释放内存是极为困难的.有时我们会忘记释放内存产生内存泄漏,有时提前释放了内存,再使用指针去引用内存就会报错. 为了更容易(同时也更安全)地使用动态内存, ...

  5. 【C++】智能指针详解

    转自:https://blog.csdn.net/flowing_wind/article/details/81301001 参考资料:<C++ Primer中文版 第五版>我们知道除了静 ...

  6. C++智能指针详解

    本文出自http://mxdxm.iteye.com/ 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最 ...

  7. 【C++】智能指针详解(二):auto_ptr

    首先,我要声明auto_ptr是一个坑!auto_ptr是一个坑!auto_ptr是一个坑!重要的事情说三遍!!! 通过上文,我们知道智能指针通过对象去管理指针,在构造对象时完成资源的分配及初始化,在 ...

  8. C++11 unique_ptr智能指针详解

    在<C++11 shared_ptr智能指针>的基础上,本节继续讲解 C++11 标准提供的另一种智能指针,即 unique_ptr 智能指针. 作为智能指针的一种,unique_ptr ...

  9. c/c++指针详解(一)

    一:相关概念 1.指针数组:int *p[6]               是数组,是一个存放指针的数组,也就是里面存放的是地址. 2.数组指针:int (*p)[6]                 ...

随机推荐

  1. Core Java Interview Question Answer

    This is a new series of sharing core Java interview question and answer on Finance domain and mostly ...

  2. hdoj 1102 Constructing Roads

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 分析:看到这题给出的都是矩阵形式,就知道了可以用Prim算法求MST. #include <i ...

  3. POJ 1504 Adding Reversed Numbers (水题,高精度整数加法)

    题意:给两个整数,求这两个数的反向数的和的反向数,和的末尾若为0,反向后则舍去即可.即若1200,反向数为21.题目给出的数据的末尾不会出现0,但是他们的和的末尾可能会出现0. #include &l ...

  4. POJ 1663

    #include<iostream>//cheng da cai zi using namespace std; int main() { int time; cin>>tim ...

  5. 转:samba 启动和重新启动 以及在虚拟系统和实际系统怎么实现软件交换

    转自:http://blog.csdn.net/zwhfyy/article/details/1605151 启动 smb start 重新启动 root 用户登陆 CHQ_WEB:/etc/init ...

  6. Sina App Engine(SAE)入门教程(2)-Mysql使用

    如果你还没有SAE的账号,请在http://sae.sina.com.cn 注册新用户.具体的注册流程请参见:Sina App Engine(SAE)入门教程(1)在常规的环境下,我们可以通过http ...

  7. 使用CAShapeLayer与UIBezierPath画出想要的图形

    使用CAShapeLayer与UIBezierPath可以实现不在view的drawRect方法中就画出一些想要的图形 步骤: 1.新建UIBezierPath对象bezierPath 2.新建CAS ...

  8. 1、搭建springMVC开发环境以及HelloWorld测试

    一.下载spring-framework,采用简单的方式: http://repo.springsource.org/libs-release-local/org/springframework/sp ...

  9. MapReduce编程系列 — 5:单表关联

    1.项目名称: 2.项目数据: chile    parentTom    LucyTom    JackJone    LucyJone    JackLucy    MaryLucy    Ben ...

  10. linq to Entity 数据库除了有主键还有唯一索引,是不是不能更新

    数据库建了一个唯一索引,使用linq to ef更新的时候,老是报,索引建冲突,,坑了我一上午,最后把索引删了