《训练之南》上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到。

题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西。

经过书上的神分析,最终将所求变为:

共n个叶子,每个非叶节点至少有两个子节点的 树的个数f(n)。最终输出2 × f(n)

首先可以枚举一下根节点的子树的叶子个数,对于有i个叶子的子树,共有f(i)种,

设d(i, j)表示每棵子树最多有i个叶节点,一共有j个叶节点的方案数。

所求答案为d(n-1, n)

假设恰好有i个叶子的子树有p棵,因为每个子树互相独立,所以对于p个有i个叶子的子树,共有C(f(i)+p-1, p)种情况,重复元素的全排列。

d(i, j) = sum{C(f(i)+p-1, p) × d(i-1, j-p×i) | p >= 0 且 p×i <= j }

边界:

d(i, 0) = d(i, 1) = 1 (i >= 1), d(0, 0) = 1

 #include <cstdio>

 const int maxn = ;
long long d[][], f[]; long long C(long long n, long long m)
{
long long ans = ;
if(m > n - m) m = n - m;
for(int i = ; i < m; i++)
{
ans *= n - i;
ans /= i+;
}
return ans;
} int main()
{
f[] = ;
int n = maxn;
d[][] = ;
for(int i = ; i <= n; i++) d[i][] = d[i][] = ;
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
for(int p = ; p * i <= j; p++)
d[i][j] += C(f[i]+p-, p) * d[i-][j-p*i];
}
f[i+] = d[i][i+];
} while(scanf("%d", &n) == && n)
printf("%lld\n", n == ? : f[n] * ); return ;
}

代码君

UVa 10253 (组合数 递推) Series-Parallel Networks的更多相关文章

  1. loj #6261 一个人的高三楼 FFT + 组合数递推

    \(\color{#0066ff}{ 题目描述 }\) 一天的学习快要结束了,高三楼在晚自习的时候恢复了宁静. 不过,\(HSD\) 桑还有一些作业没有完成,他需要在这个晚自习写完.比如这道数学题: ...

  2. UVa 10520【递推 搜索】

    UVa 10520 哇!简直恶心的递推,生推了半天..感觉题不难,但是恶心,不推出来又难受..一不小心还A了[]~( ̄▽ ̄)~*,AC的猝不及防... 先递推求出f[i][1](1<=i< ...

  3. Uva 10446【递推,dp】

    UVa 10446 求(n,bcak)递归次数.自己推出来了一个式子: 其实就是这个式子,但是不知道该怎么写,怕递归写法超时.其实直接递推就好,边界条件易得C(0,back)=1.C(1,back)= ...

  4. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  5. UVa 557 (概率 递推) Burger

    题意: 有两种汉堡给2n个孩子吃,每个孩子在吃之前要抛硬币决定吃哪一种汉堡.如果只剩一种汉堡,就不用抛硬币了. 求最后两个孩子吃到同一种汉堡的概率. 分析: 可以从反面思考,求最后两个孩子吃到不同汉堡 ...

  6. UVa 1645 Count (递推,数论)

    题意:给定一棵 n 个结点的有根树,使得每个深度中所有结点的子结点数相同.求多棵这样的树. 析:首先这棵树是有根的,那么肯定有一个根结点,然后剩下的再看能不能再分成深度相同的子树,也就是说是不是它的约 ...

  7. Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)

    有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...

  8. UVA - 11021 - Tribles 递推概率

    GRAVITATION, n.“The tendency of all bodies to approach one another with a strengthproportion to the ...

  9. 紫书 习题 10-10 UVa 1645(递推)

    除了根节点以外,有n-1个节点,然后就看n-1的因数有那些,所有因数加起来(递推)就好了. #include<cstdio> #define REP(i, a, b) for(int i ...

随机推荐

  1. C#中类型分析中的常见问题 Type - 转

    http://www.cnblogs.com/yuanyuan/archive/2012/08/16/2642281.html 写代码的时候经常需要分析已有类型的信息例如:分析现有类型自动生成类, 或 ...

  2. 20160730noip模拟赛zld

    codeforces394E 如果没有在凸多边形内一点的限制,答案肯定是 如果不在凸多边形内,那么目标点肯定在凸多边形边上,我们枚举每条边,在每条边上求出距离平方和最小的点,在这些点中求出最小的 我们 ...

  3. 腾讯QQ企业邮箱在ruby on rails 框架中的mailer配置

    在编写ruby on rails程序时,我们可能会需要用到发送邮件的程序,如果使用gmail进行smtp发送一般问题不大,但很多企业使用的是腾讯QQ企业邮箱.使用该邮箱进行链接时出现各种错误,goog ...

  4. 用Ant实现Java项目的自动构建和部署(转)

    Ant是一个Apache基金会下的跨平台的构件工具,它可以实现项目的自动构建和部署等功能.在本文中,主要让读者熟悉怎样将Ant应用到Java项目中,让它简化构建和部署操作. 一.            ...

  5. VS2010 创建WindowsService服务

    1.新建一个Windows 服务 2.添加Installer 这一步很重要,在处理完你的业务逻辑后需要添加一个Installer才能是你的Windows服务被安装. 在VS中添加Installer 右 ...

  6. ReplicaManager之DelayedOperation

    DelayedOperation包括两种:DelayedFetch和DelayedProduce,它们的存在是由Kafka Protocol决定的,而Kafka Protocol是由实际需求决定的…… ...

  7. oracle 快速删除大批量数据方法(全部删除,条件删除,删除大量重复记录)

    oracle 快速删除大批量数据方法(全部删除,条件删除,删除大量重复记录) 分类: ORACLE 数据库 2011-05-24 16:39 8427人阅读 评论(2) 收藏 举报 oracledel ...

  8. Silverlight弹出层(转载)

    ChildWindow为Silverlight中的弹出子窗口 可以在项目新建子窗口文件: 相互传值: //父窗体向子窗体传值,需要在ChildWindow中构造函数进行传值ChildWindowTes ...

  9. hdu 1233 还是畅通工程(最小生成树,基础)

    题目 //也是标准的最小生成树啊,我就改一点点,不重新再打一遍增加熟练度了 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #inclu ...

  10. Android 加载时在actionBar右上角添加一个加载图标

    ①首先要在Activity的  setContentView()方法前调用requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS); // ...