UVa 11774 (置换 找规律) Doom's Day
我看大多数人的博客只说了一句:找规律得答案为(n + m) / gcd(n, m)
不过神题的题解还须神人写。。
We can associate at each cell a base 3-number, the log3(R) most significant digits is the index of the row of the cell and the log3(C) least significant digits is the index of his column.
What are the transformation now ?
position in row-major order is rC+c
position in column-major order is cR+rWe should shift down by log3(C) the most significant digits and shift up the least significant digits by log3(R).
C=3^6, R=3^4now : rrrrcccccc (rrrr)(cccccc)
then: ccccccrrrr (cccc)(ccrrrr)the first 4 digit are always the number of row (0-indexed) and the last 6 digit the number of column of the cell (0-indexed)
Now this process is valid for each possible r or c, so we can choose r=1 and c=0 and find a the length of this recurring cycle.
Calling L the length of this basic cycle, all other cycle are combination of this one so the only possible length are divisor of L, so the solution of our problem is (m+n)/L
rrrr=0001
cccccc=000000
day 0 : 0001000000 (0001)(000000)
day 1 : 0000000001 (0000)(000001)
day 2 : 0000010000 (0000)(010000)
day 3 : 0100000000 (0100)(000000)
day 4 : 0000000100 (0000)(000100)
day 5 : 0001000000 (0001)(000000)
For solving this problem we can find the the minimal x such that x*n mod (n+m)=0, this imply x=gcd(n, n+m)=gcd(n, m).
The solution of our original problem is (n+m)/x or (n+m)/gcd(n,m).
从0开始逐行给格子进行编号,然后每个格子用一个三进制数表示。还是以34×36的矩形为例,这样每个格子都可以用一个10位三进制数(R1R2R3R4)(C1C2C3C4C5C6)表示,而且高四位是行标,低六位是列标(行和列都是从0开始的)。
比如第1行第0列的格子的标号为(0001)(000000),在执行操作的时候,第一行的数会填满第0~8列,所以这个数就变到了第0行第9列,表示成三进制数就是(0000)(000100)。
更一般地位于(R1R2R3R4)(C1C2C3C4C5C6)的格子的数会变到(C3C4C5C6)(R1R2R3R4C1C2)处。
也就是每次变换每个位置上的数字会右移4位。所以要使所有的数字都回到原位移动的最少次数就是(n + m) / gcd(n, m)
#include <cstdio>
typedef long long LL; LL gcd(LL a, LL b) { return b == ? a : gcd(b, a%b); } int main()
{
int T;
long long m, n;
scanf("%d", &T);
for(int kase = ; kase <= T; kase++)
{
scanf("%lld%lld", &m, &n);
printf("Case %d: %lld\n", kase, (m + n)/gcd(m, n));
} return ;
}
代码君
UVa 11774 (置换 找规律) Doom's Day的更多相关文章
- 紫书 习题8-5 UVa 177 (找规律)
参考了https://blog.csdn.net/weizhuwyzc000/article/details/47038989 我一开始看了很久, 拿纸折了很久, 还是折不出题目那样..一脸懵逼 后来 ...
- 紫书 习题 8-20 UVa 1620 (找规律+求逆序对)
这道题看了半天没看出什么规律, 然后看到别人的博客, 结论是当n为奇数且逆序数为奇数的时候 无解, 否则有解.但是没有给出证明, 在网上也找到详细的证明--我也不知道是为什么-- 求逆序对有两种方法, ...
- 紫书 例题8-12 UVa 12627 (找规律 + 递归)
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...
- 紫书 例题 10-25 UVa 1363(找规律)
可以发现余数是成一段一段的等差数列的. 在商数同的时候,余数是成首项为第一个数的余数,公差 为商数的等差数列. 利用这个性质求解即可. #include<cstdio> #include& ...
- UVA 11774 - Doom's Day(规律)
UVA 11774 - Doom's Day 题目链接 题意:给定一个3^n*3^m的矩阵,要求每次按行优先取出,按列优先放回,问几次能回复原状 思路:没想到怎么推理,找规律答案是(n + m) / ...
- 【数论,找规律】Uva 11526 - H(n)
原来做过的题再看还是没想出来,看来当时必然没有真正理解.这次回顾感觉理解更透彻了. 网上的题解差不多都是一个版本,而且感觉有点扯.根据n=20猜出来的? 好吧哪能根据一个就猜到那么变态的公式.其实这题 ...
- GCD XOR UVA 12716 找规律 给定一个n,找多少对(a,b)满足1<=b<=a<=n,gcd(a,b)=a^b;
/** 题目:GCD XOR UVA 12716 链接:https://vjudge.net/problem/UVA-12716 题意:给定一个n,找多少对(a,b)满足1<=b<=a&l ...
- 递推+高精度+找规律 UVA 10254 The Priest Mathematician
题目传送门 /* 题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数 递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子 ...
- UVA 10254 - The Priest Mathematician (dp | 汉诺塔 | 找规律 | 大数)
本文出自 http://blog.csdn.net/shuangde800 题目点击打开链接 题意: 汉诺塔游戏请看 百度百科 正常的汉诺塔游戏是只有3个柱子,并且如果有n个圆盘,至少需要2^n- ...
随机推荐
- 在ubuntu16.04 下安装haproxy 1.5.11 做tcp负载均衡
由于haproxy需要FQ下载,所以从csdn下载了较为新版的haproxy1.5.11,安装过程如下: 1. 解压haproxy-1.5.11.tar.gz : tar xzvf haproxy-1 ...
- Ubuntu下安装配置zsh和oh my zsh
zsh优势:自动补全功能强大和很高的可配置性 1.查看当前系统装了哪些shell cat /etc/shells 2.当前正在运行的是哪个版本的shell echo $SHELL 3.安装 ...
- mysql注入绕过的一些技巧
虽然mysql + php的开发中可以使用pdo中,但是有些老久的程序没有使用,或其他原因 1.注释绕过 select/*comment*/user/*zzsdsdsf*/from mysql.use ...
- log4j安装与简介
问题描述: 在应用程序中添加日志记录总的来说基于三个目的: (1) 监视代码中变量的变化情况,周期性的记录到文件中供其他应用进行统计分析工作: (2) 跟踪代码运行时轨迹,作为日 ...
- Remote Desktop manager 连接后无法自动登录
现象: Remote Desktop manager 连接后无法自动登录 用Windows 自带的远程桌面 可以自动登录 解决方法: 在指定站点 右键 Edit Entry. 如下图处打勾就可以了.
- ${fn:length(worklicenseList)} #表示不在struts堆栈里,没有#表示从struts堆栈里取
${fn:length(worklicenseList)} #表示不在struts堆栈里,没有#表示从struts堆栈里取
- 原 Linux搭建SVN 服务器2
原 Linux搭建SVN 服务器 发表于1年前(2014-08-05 17:55) 阅读(12257) | 评论(3) 31人收藏此文章, 我要收藏 赞3 摘要 Linux搭建SVN 服务器 目录 ...
- 你所不知道的黑客工具之 EK 篇
EK(Exploit kits)是指一套利用恶意软件感染用户电脑发起攻击的黑客工具,时下最著名的有 Angler EK.Fiesta EK.Hanjuan EK.Nuclear EK.Neutrino ...
- DOM对象和JQuery对象的区别
DOM对象和JQuery对象的区别 jQuery对象和DOM对象使用说明,需要的朋友可以参考下.1.jQuery对象和DOM对象第一次学习jQuery,经常分辨不清哪些是jQuery对象,哪些是 DO ...
- POJ1276Cash Machine
http://poj.org/problem?id=1276 题意 : 给你一个目标钱数,再给你钱币的种数和钱币的面值,让你用这些钱凑出不大于目标钱数的钱然后输出这个最接近且不大于目标钱数的钱. 思路 ...