题目描述:

Description:

Count the number of prime numbers less than a non-negative number, n.

解题思路:

    1. Let's start with a isPrime function. To determine if a number is prime, we need to check if it is not divisible by any number less than n. The runtime complexity of isPrimefunction would be O(n) and hence counting the total prime numbers up to n would be O(n2). Could we do better?

    2. As we know the number must not be divisible by any number > n / 2, we can immediately cut the total iterations half by dividing only up to n / 2. Could we still do better?

    3. Let's write down all of 12's factors:

      2 × 6 = 12
      3 × 4 = 12
      4 × 3 = 12
      6 × 2 = 12

      As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to √n because, if n is divisible by some number p, then np × q and since p ≤ q, we could derive that p ≤ √n.

      Our total runtime has now improved to O(n1.5), which is slightly better. Is there a faster approach?

    4. The Sieve of Eratosthenes is one of the most efficient ways to find all prime numbers up to n. But don't let that name scare you, I promise that the concept is surprisingly simple.


      Sieve of Eratosthenes: algorithm steps for primes below 121. "Sieve of Eratosthenes Animation" by SKopp is licensed under CC BY 2.0.

      We start off with a table of n numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?

    5. 4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?

    6. In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is p, we can always mark off multiples of p starting at p2, then in increments of pp2 + pp2 + 2p, ... Now what should be the terminating loop condition?

    7. It is easy to say that the terminating loop condition is p < n, which is certainly correct but not efficient. Do you still remember Hint #3?

    8. Yes, the terminating loop condition can be p < √n, as all non-primes ≥ √n must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.

      The Sieve of Eratosthenes uses an extra O(n) memory and its runtime complexity is O(n log log n). For the more mathematically inclined readers, you can read more about its algorithm complexity on Wikipedia.

代码如下:

public class Solution {
public int countPrimes(int n) {
boolean[] isPrime = new boolean[n];
int count = 0;
for(int i = 2; i < n; i++)
isPrime[i] = true;
for(int i = 2; i * i < n; i++){
if(!isPrime[i])
continue;
for(int j = i * i; j < n; j += i){
isPrime[j] = false;
}
}
for(int i = 2; i < n; i++){
if(isPrime[i])
count++;
}
return count;
}
}

  

Java [Leetcode 204]Count Primes的更多相关文章

  1. [leetcode] 204. Count Primes 统计小于非负整数n的素数的个数

    题目大意 https://leetcode.com/problems/count-primes/description/ 204. Count Primes Count the number of p ...

  2. Java for LeetCode 204 Count Primes

    Description: Count the number of prime numbers less than a non-negative number, n. 解题思路: 空间换时间,开一个空间 ...

  3. [LeetCode] 204. Count Primes 质数的个数

    Count the number of prime numbers less than a non-negative number, n. Example: Input: 10 Output: 4 E ...

  4. [LeetCode] 204. Count Primes 计数质数

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  5. LeetCode 204. Count Primes (质数的个数)

    Description: Count the number of prime numbers less than a non-negative number, n. 题目标签:Hash Table 题 ...

  6. LeetCode 204 Count Primes

    Problem: Count the number of prime numbers less than a non-negative number, n. Summary: 判断小于某非负数n的质数 ...

  7. (easy)LeetCode 204.Count Primes

    Description: Count the number of prime numbers less than a non-negative number, n. Credits:Special t ...

  8. [LeetCode] 204. Count Primes 解题思路

    Count the number of prime numbers less than a non-negative number, n. 问题:找出所有小于 n 的素数. 题目很简洁,但是算法实现的 ...

  9. LeetCode - 204. Count Primes - 埃拉托斯特尼筛法 95.12% - (C++) - Sieve of Eratosthenes

    原题 原题链接 Description: Count the number of prime numbers less than a non-negative number, n. 计算小于非负数n的 ...

随机推荐

  1. STL中的单向队列queue

    转载自:http://blog.csdn.net/morewindows/article/details/6950917 stl中的queue指单向队列,使用时,包含头文件<queue>. ...

  2. PHP开发框架[国内框架]

    1.Thinkphp  http://thinkphp.cn/ 2.Brophp   http://www.brophp.com/zf/ 由LAMP兄弟连打造 3.WindFramework http ...

  3. Unity3D脚本中文系列教程(十五)

    http://dong2008hong.blog.163.com/blog/static/4696882720140322449780/ Unity3D脚本中文系列教程(十四) ◆ LightRend ...

  4. 中国移动MM Android/OPhone付费SDK--MMBillingSDK,集成问题总结

    原地址:http://www.j2megame.com/html/xwzx/ty/2916.html 中国移动MM Android/OPhone付费SDK--MMBillingSDK,集成问题总结 近 ...

  5. SDUT1574组合数的计算(组合数)

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1574 这个题,比较奇怪,是用递推去做的,我试了 ...

  6. hibernate的简单学习(第一天)

    sql脚本: -- Create table drop table T_PERSON; create table T_PERSON ( id ) PRIMARY KEY, name ), passwo ...

  7. [hackerrank]Palindrome Index

    简单题. #include <iostream> #include <string> using namespace std; int main() { int T; cin ...

  8. Python 中的 TK编程

    可爱的 Python:Python 中的 TK编程 http://www.ibm.com/developerworks/cn/linux/sdk/python/charm-12/ python che ...

  9. iOS开发 -- 发送JSON数据给服务器

    - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { // 1.URL NSURL *url = [NSURL URLW ...

  10. System.Windows.Forms.AxHost.InvalidActiveXStateException”类型的异常在 ESRI.ArcGIS.AxControls.dll 中发生,但未在用户代码中进行处理

    private void CopyAndOverwriteMap() { //IObjectCopy接口变量申明 IObjectCopy objectCopy = new ObjectCopyClas ...