Java [Leetcode 204]Count Primes
题目描述:
Description:
Count the number of prime numbers less than a non-negative number, n.
解题思路:
Let's start with a isPrime function. To determine if a number is prime, we need to check if it is not divisible by any number less than n. The runtime complexity of isPrimefunction would be O(n) and hence counting the total prime numbers up to n would be O(n2). Could we do better?
As we know the number must not be divisible by any number > n / 2, we can immediately cut the total iterations half by dividing only up to n / 2. Could we still do better?
Let's write down all of 12's factors:
2 × 6 = 12
3 × 4 = 12
4 × 3 = 12
6 × 2 = 12As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to √n because, if n is divisible by some number p, then n= p × q and since p ≤ q, we could derive that p ≤ √n.
Our total runtime has now improved to O(n1.5), which is slightly better. Is there a faster approach?
The Sieve of Eratosthenes is one of the most efficient ways to find all prime numbers up to n. But don't let that name scare you, I promise that the concept is surprisingly simple.
Sieve of Eratosthenes: algorithm steps for primes below 121. "Sieve of Eratosthenes Animation" by SKopp is licensed under CC BY 2.0.We start off with a table of n numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?
4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?
In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is p, we can always mark off multiples of p starting at p2, then in increments of p: p2 + p, p2 + 2p, ... Now what should be the terminating loop condition?
It is easy to say that the terminating loop condition is p < n, which is certainly correct but not efficient. Do you still remember Hint #3?
Yes, the terminating loop condition can be p < √n, as all non-primes ≥ √n must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.
The Sieve of Eratosthenes uses an extra O(n) memory and its runtime complexity is O(n log log n). For the more mathematically inclined readers, you can read more about its algorithm complexity on Wikipedia.
代码如下:
public class Solution {
public int countPrimes(int n) {
boolean[] isPrime = new boolean[n];
int count = 0;
for(int i = 2; i < n; i++)
isPrime[i] = true;
for(int i = 2; i * i < n; i++){
if(!isPrime[i])
continue;
for(int j = i * i; j < n; j += i){
isPrime[j] = false;
}
}
for(int i = 2; i < n; i++){
if(isPrime[i])
count++;
}
return count;
}
}
Java [Leetcode 204]Count Primes的更多相关文章
- [leetcode] 204. Count Primes 统计小于非负整数n的素数的个数
题目大意 https://leetcode.com/problems/count-primes/description/ 204. Count Primes Count the number of p ...
- Java for LeetCode 204 Count Primes
Description: Count the number of prime numbers less than a non-negative number, n. 解题思路: 空间换时间,开一个空间 ...
- [LeetCode] 204. Count Primes 质数的个数
Count the number of prime numbers less than a non-negative number, n. Example: Input: 10 Output: 4 E ...
- [LeetCode] 204. Count Primes 计数质数
Description: Count the number of prime numbers less than a non-negative number, n click to show more ...
- LeetCode 204. Count Primes (质数的个数)
Description: Count the number of prime numbers less than a non-negative number, n. 题目标签:Hash Table 题 ...
- LeetCode 204 Count Primes
Problem: Count the number of prime numbers less than a non-negative number, n. Summary: 判断小于某非负数n的质数 ...
- (easy)LeetCode 204.Count Primes
Description: Count the number of prime numbers less than a non-negative number, n. Credits:Special t ...
- [LeetCode] 204. Count Primes 解题思路
Count the number of prime numbers less than a non-negative number, n. 问题:找出所有小于 n 的素数. 题目很简洁,但是算法实现的 ...
- LeetCode - 204. Count Primes - 埃拉托斯特尼筛法 95.12% - (C++) - Sieve of Eratosthenes
原题 原题链接 Description: Count the number of prime numbers less than a non-negative number, n. 计算小于非负数n的 ...
随机推荐
- MSAA
多重采样抗锯齿(MultiSampling Anti-Aliasing,簡稱MSAA)是一种特殊的超级采样抗锯齿(SSAA).MSAA首先来自于OpenGL.具体是MSAA只对Z缓存(Z-Buffer ...
- curPos和tgtPos
curpos tgtpos 乍一看以为是当前位置和目标位置,但在项目里面这两个位置有点坑 当客户端玩家移动或者AI里面的位置,会把获得的位置付给tgtpos 而以前的tgtpos会付给curpos 所 ...
- 【Hibernate总结系列】....hbm.xml配置
在Hibernate中,各表的映射文件….hbm.xml可以通过工具生成,例如在使用MyEclipse开发时,它提供了自动生成映射文件的工具.本节简单的讲述一下这些配置文件的配置. 配置文件的基本结构 ...
- 设置HTTP header方式
一, Server Code JSP----> <%@ page language="java" contentType="text/html; charse ...
- 关于C#和ASP.NET中对App.config和Web.config文件里的[appSettings]和[connectionStrings]节点进行新增、修改、删除和读取相关的操作
最近我做的一些项目,经常需要用到对应用程序的配置文件操作,如app.config和web.config的配置文件,特别是对配置文件中的[appSettings]和[connectionStrings] ...
- C#和Javascript中 正则表达式使用的总结
说明:本文并非原创,而是从网站上搜集了一些资料整理的!如有雷同,纯属巧合 1.js中正则表达式的使用 在js中定义正则表达式很简单,有两种方式,一种是通过构造函数,一种是通过//,也就是两个斜杠.例如 ...
- substr_replace()函数:将手机号中间4位隐藏为*号
<?php $mobile = "15810320826"; echo substr_replace($mobile,'****',3 , 4); ?> substr_ ...
- POJ2299Ultra-QuickSort
http://poj.org/problem?id=2299 题意 : 排序,求排序次数,本来以为用冒泡可以搞定,事实上,那么大的数据以及一个TLE告诉我,会超时......... 思路 : 问了一下 ...
- Oracle 10 - 数据库表
Oracle数据库表类型 1.堆表 2.索引组织表 3.索引clustered表 4.散列clustered表 5.有序散列clustered表 6.嵌套表 7.临时表 8.对象表 9.外部表 Ora ...
- Linqer工具
这些天写Linq挺烦人的,就上网搜搜可有什么好的sql转Linq的工具,咦,马上就看上了Linqer. 哈哈,介绍一下使用方法吧: 官方下载网站:http://sqltolinq.com/downlo ...