HDU-4336 Card Collector 概率DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336
题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要买的食品数的期望。
压缩DP:把每个食品用二进制表示,0和1分别表示没有卡片和已经收集到此卡片的期望,则
f[s]=(1-Σp[i])*f[s]+Σp[j]*f[s]+Σp[k]*f[s|(1<<k)]
s表示状态,i表示所有卡片编号,j表示s状态中已经有的卡片编号,k表示s状态中没有的卡片编号
-> Σp[i]*f[s]=Σp[i]*f[s|(1<<i)]
或者容斥原理做:
压缩DP:
//STATUS:C++_AC_281MS_7128KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=(<<)+;
const int INF=0x3f3f3f3f;
const int MOD= ,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double p[],f[N];
int n; int main(){
// freopen("in.txt","r",stdin);
int i,j,up;
double s;
while(~scanf("%d",&n))
{
for(i=;i<n;i++){
scanf("%lf",&p[i]);
}
up=(<<n)-;
f[up]=;
for(i=up-;i>=;i--){
f[i]=;s=;
for(j=;j<n;j++){
if(i&(<<j))continue;
f[i]+=p[j]*f[i|(<<j)];
s+=p[j];
}
f[i]/=s;
} printf("%lf\n",f[]);
}
return ;
}
容斥原理:
//STATUS:C++_AC_203MS_244KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=(<<)+;
const int INF=0x3f3f3f3f;
const int MOD= ,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double p[];
int n; int main(){
// freopen("in.txt","r",stdin);
int i,j,up,cnt;
double ans,s;
while(~scanf("%d",&n))
{
for(i=;i<n;i++){
scanf("%lf",&p[i]);
}
up=(<<n)-;ans=;
for(i=;i<=up;i++){
s=;
for(j=cnt=;j<n;j++){
if(i&(<<j)){
cnt++;
s+=p[j];
}
}
if(cnt&)ans+=/s;
else ans-=/s;
} printf("%lf\n",ans);
}
return ;
}
HDU-4336 Card Collector 概率DP的更多相关文章
- $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥
正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...
- HDU 4336 Card Collector 期望dp+状压
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...
- hdu 4336 Card Collector(期望 dp 状态压缩)
Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- HDU 4336 Card Collector(动态规划-概率DP)
Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...
- HDU 4336——Card Collector——————【概率dp】
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- hdu 4336 Card Collector (概率dp+位运算 求期望)
题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- [HDU 4336] Card Collector (状态压缩概率dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题目大意:有n种卡片,需要吃零食收集,打开零食,出现第i种卡片的概率是p[i],也有可能不出现卡 ...
- HDU 4336 Card Collector(状压 + 概率DP 期望)题解
题意:每包干脆面可能开出卡或者什么都没有,一共n种卡,每种卡每包爆率pi,问收齐n种卡的期望 思路:期望求解公式为:$E(x) = \sum_{i=1}^{k}pi * xi + (1 - \sum_ ...
- HDU 4336 Card Collector:期望dp + 状压
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 一共有n种卡片.每买一袋零食,有可能赠送一张卡片,也可能没有. 每一种卡片赠送的概率为p ...
随机推荐
- Tiny6410 设备驱动之helloworld
在自己的工作目录下建立helloworld_driver.c #include <linux/init.h> #include <linux/module.h> //代码遵守的 ...
- 快速排序(quicksort)算法实现
快速排序(quicksort)是分治法的典型例子,它的主要思想是将一个待排序的数组以数组的某一个元素X为轴,使这个轴的左侧元素都比X大,而右侧元素都比X小(从大到小排序).然后以这个X在变换后数组的位 ...
- python中unicode、utf8、gbk等编码问题
转自:http://luchanghong.com/python/2012/07/06/python-encoding-with-unicode-and-gbk-and-utf8.html 概要:编码 ...
- APP,webapp 设计相关资料汇集区
(1).@2x iPhone3GS时代,我们为一个应用提供图标(或按钮提供贴图),只需要icon.png.针对现在的iPhone4~6 Retina显示屏,需要制作额外的@2x高分辨率版本. 例如在i ...
- 关于Application.Lock和Lock(obj)
http://www.cnblogs.com/yeagen/archive/2012/03/01/2375610.html 1.Application.Lock和Application.UnLock一 ...
- Java泛型:类型擦除
类型擦除 代码片段一 Class c1 = new ArrayList<Integer>().getClass(); Class c2 = new ArrayList<String& ...
- MyBatis的动态SQL操作--更新
更新条件不确定,需要根据具体的情况生成sql语句. id是主键,一般不会去更新. 1.只更新name的值 update student set name = ? where id = ? 2.只更新s ...
- Android Paint中setTextSize
界面适配的时候发现Paint.setTextSize与TextView.setTextSize传入的单位不一致.Paint.setTextSize传入的单位是px,TextView.setTextSi ...
- Android TextView和EditText属性详解
TextView属性详解: autoLink设置 是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接.可选值(none/web /email/phone/map/all) ...
- nyist 737 相邻石子合并问题
http://acm.nyist.net/JudgeOnline/problem.php?pid=737 动态规划状态方程: dp[i][j]=d[i][k]+dp[k+1][j]+(sum[k]-s ...