HDU-4336 Card Collector 概率DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336
题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要买的食品数的期望。
压缩DP:把每个食品用二进制表示,0和1分别表示没有卡片和已经收集到此卡片的期望,则
f[s]=(1-Σp[i])*f[s]+Σp[j]*f[s]+Σp[k]*f[s|(1<<k)]
s表示状态,i表示所有卡片编号,j表示s状态中已经有的卡片编号,k表示s状态中没有的卡片编号
-> Σp[i]*f[s]=Σp[i]*f[s|(1<<i)]
或者容斥原理做:
压缩DP:
//STATUS:C++_AC_281MS_7128KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=(<<)+;
const int INF=0x3f3f3f3f;
const int MOD= ,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double p[],f[N];
int n; int main(){
// freopen("in.txt","r",stdin);
int i,j,up;
double s;
while(~scanf("%d",&n))
{
for(i=;i<n;i++){
scanf("%lf",&p[i]);
}
up=(<<n)-;
f[up]=;
for(i=up-;i>=;i--){
f[i]=;s=;
for(j=;j<n;j++){
if(i&(<<j))continue;
f[i]+=p[j]*f[i|(<<j)];
s+=p[j];
}
f[i]/=s;
} printf("%lf\n",f[]);
}
return ;
}
容斥原理:
//STATUS:C++_AC_203MS_244KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=(<<)+;
const int INF=0x3f3f3f3f;
const int MOD= ,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End double p[];
int n; int main(){
// freopen("in.txt","r",stdin);
int i,j,up,cnt;
double ans,s;
while(~scanf("%d",&n))
{
for(i=;i<n;i++){
scanf("%lf",&p[i]);
}
up=(<<n)-;ans=;
for(i=;i<=up;i++){
s=;
for(j=cnt=;j<n;j++){
if(i&(<<j)){
cnt++;
s+=p[j];
}
}
if(cnt&)ans+=/s;
else ans-=/s;
} printf("%lf\n",ans);
}
return ;
}
HDU-4336 Card Collector 概率DP的更多相关文章
- $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥
正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...
- HDU 4336 Card Collector 期望dp+状压
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...
- hdu 4336 Card Collector(期望 dp 状态压缩)
Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- HDU 4336 Card Collector(动态规划-概率DP)
Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...
- HDU 4336——Card Collector——————【概率dp】
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- hdu 4336 Card Collector (概率dp+位运算 求期望)
题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- [HDU 4336] Card Collector (状态压缩概率dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题目大意:有n种卡片,需要吃零食收集,打开零食,出现第i种卡片的概率是p[i],也有可能不出现卡 ...
- HDU 4336 Card Collector(状压 + 概率DP 期望)题解
题意:每包干脆面可能开出卡或者什么都没有,一共n种卡,每种卡每包爆率pi,问收齐n种卡的期望 思路:期望求解公式为:$E(x) = \sum_{i=1}^{k}pi * xi + (1 - \sum_ ...
- HDU 4336 Card Collector:期望dp + 状压
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意: 一共有n种卡片.每买一袋零食,有可能赠送一张卡片,也可能没有. 每一种卡片赠送的概率为p ...
随机推荐
- hdu 4190
二分求箱子中的票数 然后判是否满足条件 主要为了纪念一下用优先队列9000ms水过 #include<cstdio> #include<climits> #inclu ...
- hdu 4648
求一个数列中 去掉一些连续的数之后 不改变对m取余后的值 就是求一个最长的连续子序列 对m取余后为0 我的方法可能比较水 #include<iostream> #include<c ...
- Flume学习——BasicChannelSemantics
public class MemoryChannel extends BasicChannelSemantics public abstract class BasicChannelSemantics ...
- jquery图片放大器插件
将鼠标移动到一张图片上来的时候,放大该图片的某些细节. <html> <head> <script src="../js/jquery-1.6.js" ...
- css3属性整理
浏览器内核:主流内容主要有Mozilla(熟悉的有Firefox,Flock等浏览器).WebKit(熟悉的有Safari.Chrome等浏览器).Opera(Opera浏览器).Trident(讨厌 ...
- OneAPM x 腾讯 | OneAPM 技术公开课·深圳 报名:前端性能大作战!
「 OneAPM 技术公开课」由应用性能管理第一品牌 OneAPM 发起,内容面向 IT 开发和运维人员.云集技术牛人.知名架构师.实践专家共同探讨技术热点. 11月28日,OneAPM 技术公开课第 ...
- IsBadReadPtr|IsBadWritePtr调试崩溃
遇到一未找到必然出现条件的崩溃,不知道什么时候能触发崩溃,崩溃dump显示,试图访问了非法的内存或者写入了非法的内存 此时如下两个函数就比较有用了: BOOL WINAPI IsBadReadPtr( ...
- Visual C++ 6.0静态、动态链接库
1.什么是静态连接库,什么是动态链接库 静态链接库与动态链接库都是共享代码的方式,如果采用静态链接库,则无论你愿不愿意,lib 中的指令都全部被直接包含在最终生成的 EXE 文件中了 ...
- 1989-C. 数字三角形
描述 如图所示,是一个数字搭成的三角形. 若起始位置在三角形的顶端,结束位置在三角形底边,每一步只能向下方或向右下角移动一格.请编程计算一条路径,使得路径上经过的数字和最大.(图中路径7→3→8→7→ ...
- struts2 标签的使用之二 s:iterator
struts2的s:iterator 可以遍历 数据栈里面的任何数组,集合等等 以下几个简单的demo:s:iterator 标签有3个属性: value:被迭代的集合 id :指定集 ...